Predictive visualization of fiber laser cutting topography via deep learning with image inpainting
Laser cutting is a fast, precise, and noncontact processing technique widely applied throughout industry. However, parameter specific defects can be formed while cutting, negatively impacting the cut quality. While light-matter interactions are highly nonlinear and are, therefore, challenging to mod...
Gespeichert in:
Veröffentlicht in: | Journal of laser applications 2023-08, Vol.35 (3) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of laser applications |
container_volume | 35 |
creator | Courtier, Alexander F. Praeger, Matthew Grant-Jacob, James A. Codemard, Christophe Harrison, Paul Zervas, Michalis Mills, Ben |
description | Laser cutting is a fast, precise, and noncontact processing technique widely applied throughout industry. However, parameter specific defects can be formed while cutting, negatively impacting the cut quality. While light-matter interactions are highly nonlinear and are, therefore, challenging to model analytically, deep learning offers the capability of modeling these interactions directly from data. Here, we show that deep learning can be used to scale up visual predictions for parameter specific defects produced in cutting as well as for predicting defects for parameters not measured experimentally. Furthermore, visual predictions can be used to model the relationship between laser cutting defects and laser cutting parameters. |
doi_str_mv | 10.2351/7.0000957 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2351_7_0000957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jla</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3e08d8cdf2f77fc7ba80f2cb22eaf581175aa849a74c81844cfa195d27d905ca3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oO9KqTuV9zNUYpWoaAHBW9hsh_tSkzC7jZSf72JLXoQnMPMwDzzMvMidE7JjPGcXskZGaLI5QGa0IKrjHIlD4eeCJZxcf16jE5ifCOESi7FBFVPwRqvk-8t7n3cQO0_Ifm2wa3Dzlc24BrikPUmJd-scGq7dhWgW28HHrCxtsO1hdCMww-f1ti_w8pi33Tgm3HlFB05qKM929cperm7fZ7fZ8vHxcP8ZplpzkXKuCXKKG0cc1I6LStQxDFdMWbB5YpSmQMoUYAUWlElhHZAi9wwaQqSa-BTdLHT1aGNMVhXdmG4JWxLSsrRnFKWe3MG9nLHRu3T978_cN-GX7DsjPsP_qv8BXE9dYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictive visualization of fiber laser cutting topography via deep learning with image inpainting</title><source>AIP Journals Complete</source><creator>Courtier, Alexander F. ; Praeger, Matthew ; Grant-Jacob, James A. ; Codemard, Christophe ; Harrison, Paul ; Zervas, Michalis ; Mills, Ben</creator><creatorcontrib>Courtier, Alexander F. ; Praeger, Matthew ; Grant-Jacob, James A. ; Codemard, Christophe ; Harrison, Paul ; Zervas, Michalis ; Mills, Ben</creatorcontrib><description>Laser cutting is a fast, precise, and noncontact processing technique widely applied throughout industry. However, parameter specific defects can be formed while cutting, negatively impacting the cut quality. While light-matter interactions are highly nonlinear and are, therefore, challenging to model analytically, deep learning offers the capability of modeling these interactions directly from data. Here, we show that deep learning can be used to scale up visual predictions for parameter specific defects produced in cutting as well as for predicting defects for parameters not measured experimentally. Furthermore, visual predictions can be used to model the relationship between laser cutting defects and laser cutting parameters.</description><identifier>ISSN: 1042-346X</identifier><identifier>EISSN: 1938-1387</identifier><identifier>DOI: 10.2351/7.0000957</identifier><identifier>CODEN: JLAPEN</identifier><language>eng</language><ispartof>Journal of laser applications, 2023-08, Vol.35 (3)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3e08d8cdf2f77fc7ba80f2cb22eaf581175aa849a74c81844cfa195d27d905ca3</citedby><cites>FETCH-LOGICAL-c334t-3e08d8cdf2f77fc7ba80f2cb22eaf581175aa849a74c81844cfa195d27d905ca3</cites><orcidid>0000-0002-1784-1012 ; 0000-0002-0651-4059 ; 0009-0004-6390-1137 ; 0000-0002-4270-4247 ; 0000-0002-5814-6155 ; 0000-0001-9189-8263 ; 0000-0003-1943-4055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jla/article-lookup/doi/10.2351/7.0000957$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Courtier, Alexander F.</creatorcontrib><creatorcontrib>Praeger, Matthew</creatorcontrib><creatorcontrib>Grant-Jacob, James A.</creatorcontrib><creatorcontrib>Codemard, Christophe</creatorcontrib><creatorcontrib>Harrison, Paul</creatorcontrib><creatorcontrib>Zervas, Michalis</creatorcontrib><creatorcontrib>Mills, Ben</creatorcontrib><title>Predictive visualization of fiber laser cutting topography via deep learning with image inpainting</title><title>Journal of laser applications</title><description>Laser cutting is a fast, precise, and noncontact processing technique widely applied throughout industry. However, parameter specific defects can be formed while cutting, negatively impacting the cut quality. While light-matter interactions are highly nonlinear and are, therefore, challenging to model analytically, deep learning offers the capability of modeling these interactions directly from data. Here, we show that deep learning can be used to scale up visual predictions for parameter specific defects produced in cutting as well as for predicting defects for parameters not measured experimentally. Furthermore, visual predictions can be used to model the relationship between laser cutting defects and laser cutting parameters.</description><issn>1042-346X</issn><issn>1938-1387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oO9KqTuV9zNUYpWoaAHBW9hsh_tSkzC7jZSf72JLXoQnMPMwDzzMvMidE7JjPGcXskZGaLI5QGa0IKrjHIlD4eeCJZxcf16jE5ifCOESi7FBFVPwRqvk-8t7n3cQO0_Ifm2wa3Dzlc24BrikPUmJd-scGq7dhWgW28HHrCxtsO1hdCMww-f1ti_w8pi33Tgm3HlFB05qKM929cperm7fZ7fZ8vHxcP8ZplpzkXKuCXKKG0cc1I6LStQxDFdMWbB5YpSmQMoUYAUWlElhHZAi9wwaQqSa-BTdLHT1aGNMVhXdmG4JWxLSsrRnFKWe3MG9nLHRu3T978_cN-GX7DsjPsP_qv8BXE9dYs</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Courtier, Alexander F.</creator><creator>Praeger, Matthew</creator><creator>Grant-Jacob, James A.</creator><creator>Codemard, Christophe</creator><creator>Harrison, Paul</creator><creator>Zervas, Michalis</creator><creator>Mills, Ben</creator><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1784-1012</orcidid><orcidid>https://orcid.org/0000-0002-0651-4059</orcidid><orcidid>https://orcid.org/0009-0004-6390-1137</orcidid><orcidid>https://orcid.org/0000-0002-4270-4247</orcidid><orcidid>https://orcid.org/0000-0002-5814-6155</orcidid><orcidid>https://orcid.org/0000-0001-9189-8263</orcidid><orcidid>https://orcid.org/0000-0003-1943-4055</orcidid></search><sort><creationdate>202308</creationdate><title>Predictive visualization of fiber laser cutting topography via deep learning with image inpainting</title><author>Courtier, Alexander F. ; Praeger, Matthew ; Grant-Jacob, James A. ; Codemard, Christophe ; Harrison, Paul ; Zervas, Michalis ; Mills, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3e08d8cdf2f77fc7ba80f2cb22eaf581175aa849a74c81844cfa195d27d905ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courtier, Alexander F.</creatorcontrib><creatorcontrib>Praeger, Matthew</creatorcontrib><creatorcontrib>Grant-Jacob, James A.</creatorcontrib><creatorcontrib>Codemard, Christophe</creatorcontrib><creatorcontrib>Harrison, Paul</creatorcontrib><creatorcontrib>Zervas, Michalis</creatorcontrib><creatorcontrib>Mills, Ben</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><jtitle>Journal of laser applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courtier, Alexander F.</au><au>Praeger, Matthew</au><au>Grant-Jacob, James A.</au><au>Codemard, Christophe</au><au>Harrison, Paul</au><au>Zervas, Michalis</au><au>Mills, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive visualization of fiber laser cutting topography via deep learning with image inpainting</atitle><jtitle>Journal of laser applications</jtitle><date>2023-08</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><issn>1042-346X</issn><eissn>1938-1387</eissn><coden>JLAPEN</coden><abstract>Laser cutting is a fast, precise, and noncontact processing technique widely applied throughout industry. However, parameter specific defects can be formed while cutting, negatively impacting the cut quality. While light-matter interactions are highly nonlinear and are, therefore, challenging to model analytically, deep learning offers the capability of modeling these interactions directly from data. Here, we show that deep learning can be used to scale up visual predictions for parameter specific defects produced in cutting as well as for predicting defects for parameters not measured experimentally. Furthermore, visual predictions can be used to model the relationship between laser cutting defects and laser cutting parameters.</abstract><doi>10.2351/7.0000957</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1784-1012</orcidid><orcidid>https://orcid.org/0000-0002-0651-4059</orcidid><orcidid>https://orcid.org/0009-0004-6390-1137</orcidid><orcidid>https://orcid.org/0000-0002-4270-4247</orcidid><orcidid>https://orcid.org/0000-0002-5814-6155</orcidid><orcidid>https://orcid.org/0000-0001-9189-8263</orcidid><orcidid>https://orcid.org/0000-0003-1943-4055</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-346X |
ispartof | Journal of laser applications, 2023-08, Vol.35 (3) |
issn | 1042-346X 1938-1387 |
language | eng |
recordid | cdi_crossref_primary_10_2351_7_0000957 |
source | AIP Journals Complete |
title | Predictive visualization of fiber laser cutting topography via deep learning with image inpainting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20visualization%20of%20fiber%20laser%20cutting%20topography%20via%20deep%20learning%20with%20image%20inpainting&rft.jtitle=Journal%20of%20laser%20applications&rft.au=Courtier,%20Alexander%20F.&rft.date=2023-08&rft.volume=35&rft.issue=3&rft.issn=1042-346X&rft.eissn=1938-1387&rft.coden=JLAPEN&rft_id=info:doi/10.2351/7.0000957&rft_dat=%3Cscitation_cross%3Ejla%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |