Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation
Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions doped with NaHCO3 have been determined in pH = 8.1-8.6 and at room temperature and pressure. The coefficient is defined as Kd(REE: ppt./sol.), where REE designates each lanthanide (Ln), Y or Sc. The NaHCO3 conce...
Gespeichert in:
Veröffentlicht in: | GEOCHEMICAL JOURNAL 1999/06/20, Vol.33(3), pp.181-197 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 3 |
container_start_page | 181 |
container_title | GEOCHEMICAL JOURNAL |
container_volume | 33 |
creator | Kawabe, Iwao Ohta, Atsuyuki Miura, Noriko |
description | Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions doped with NaHCO3 have been determined in pH = 8.1-8.6 and at room temperature and pressure. The coefficient is defined as Kd(REE: ppt./sol.), where REE designates each lanthanide (Ln), Y or Sc. The NaHCO3 concentration was changed in the range of (0∼12) × 10-3 M under a constant NaCl concentration (0.45 M). Kd(Sc) rapidly approaches Kd(Lu) as [NaHCO3] increases. Kd(Y) is lower than Kd(Ho) even in solutions with high [NaHCO3]. The convex tetrad effect in logKd(Ln) becomes less conspicuous with increasing [NaHCO3]. We proposed a method to determine REE-carbonate complexation constants from observed variations of Kd(REE) with increasing [CO32-, aq]. In solutions with [NaHCO3] ≥ 1 × 10-2 M, the dominant dissolved REE species are REE(CO3)2-(aq) except for La. We have tentatively determined the stability constants of β2 for REE(CO3)2-(aq) from our preliminary data set, although β1 for REECO3+(aq) could not be estimated. The series variation of logβ2 are compatible with literature values. On the basis of the refined spin-pairing energy theory (RSPET), we have analyzed the series variations of logβ2 and logKd(Ln) values with and without Ln(III)-carbonate complexation effect. Racah E1 parameter is approximately the same between Ln(OH)3·nH2O as the precipitate and Ln(CO3)2-(aq), whereas Racah E3 parameter of Ln(CO3)2-(aq) is only slightly larger than that of Ln(OH)3·nH2O. This is the reason that the convex tetrad effect of logKd(Ln) diminishes as Ln(III)-carbonate complexation proceeds. Our experimental logKd(Ln) values and apparent logKd(Ln) ones from marine Mn-Fe deposit/seawater pairs suggest that reported log(β1/β2) values for light Ln are slightly smaller than those ought to be. |
doi_str_mv | 10.2343/geochemj.33.181 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2343_geochemj_33_181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_geochemj1966_33_3_33_3_181_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-a560t-f9f27fc83a7bd55a6567c085388276202720963935ad8d435f58daaf0b3817293</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKfX3uYFuqU9S5teytycMBREr0uanGwZXTOSiOuVr27rdDfnwOH7_gM_Ifcpm2Qwg-kGndrifjcBmKQivSCjVAiW8LKASzJiLM2TgrHsmtyEsGMMZiUXI_L9aEP0tv6M1rVUOTTGKottDNQZ-rZY0BrjF2JLl0jdsdt22ruj1UgPHpU92CgjBipbTV_kvKHBNb9R_ckYVBE1rbshJ1HS167t6f7L_tDgUQ7cLbkysgl497fH5GO5eJ-vkvXr0_P8YZ1InrOYmNJkhVECZFFrzmXO80IxwUGIrMgzlhUZK3MogUst9Ay44UJLaVgNIi2yEsZkespV3oXg0VQHb_fSd1XKqqG_6r-_CqDq--uN1cnYhSg3eOalj1Y1eObTMs8HB06jV8-I2kpfYQs_PDKBYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Freely Accessible Japanese Titles</source><source>Free Full-Text Journals in Chemistry</source><creator>Kawabe, Iwao ; Ohta, Atsuyuki ; Miura, Noriko</creator><creatorcontrib>Kawabe, Iwao ; Ohta, Atsuyuki ; Miura, Noriko</creatorcontrib><description>Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions doped with NaHCO3 have been determined in pH = 8.1-8.6 and at room temperature and pressure. The coefficient is defined as Kd(REE: ppt./sol.), where REE designates each lanthanide (Ln), Y or Sc. The NaHCO3 concentration was changed in the range of (0∼12) × 10-3 M under a constant NaCl concentration (0.45 M). Kd(Sc) rapidly approaches Kd(Lu) as [NaHCO3] increases. Kd(Y) is lower than Kd(Ho) even in solutions with high [NaHCO3]. The convex tetrad effect in logKd(Ln) becomes less conspicuous with increasing [NaHCO3]. We proposed a method to determine REE-carbonate complexation constants from observed variations of Kd(REE) with increasing [CO32-, aq]. In solutions with [NaHCO3] ≥ 1 × 10-2 M, the dominant dissolved REE species are REE(CO3)2-(aq) except for La. We have tentatively determined the stability constants of β2 for REE(CO3)2-(aq) from our preliminary data set, although β1 for REECO3+(aq) could not be estimated. The series variation of logβ2 are compatible with literature values. On the basis of the refined spin-pairing energy theory (RSPET), we have analyzed the series variations of logβ2 and logKd(Ln) values with and without Ln(III)-carbonate complexation effect. Racah E1 parameter is approximately the same between Ln(OH)3·nH2O as the precipitate and Ln(CO3)2-(aq), whereas Racah E3 parameter of Ln(CO3)2-(aq) is only slightly larger than that of Ln(OH)3·nH2O. This is the reason that the convex tetrad effect of logKd(Ln) diminishes as Ln(III)-carbonate complexation proceeds. Our experimental logKd(Ln) values and apparent logKd(Ln) ones from marine Mn-Fe deposit/seawater pairs suggest that reported log(β1/β2) values for light Ln are slightly smaller than those ought to be.</description><identifier>ISSN: 0016-7002</identifier><identifier>EISSN: 1880-5973</identifier><identifier>DOI: 10.2343/geochemj.33.181</identifier><language>eng</language><publisher>GEOCHEMICAL SOCIETY OF JAPAN</publisher><ispartof>GEOCHEMICAL JOURNAL, 1999/06/20, Vol.33(3), pp.181-197</ispartof><rights>Geochemical Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a560t-f9f27fc83a7bd55a6567c085388276202720963935ad8d435f58daaf0b3817293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>Kawabe, Iwao</creatorcontrib><creatorcontrib>Ohta, Atsuyuki</creatorcontrib><creatorcontrib>Miura, Noriko</creatorcontrib><title>Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation</title><title>GEOCHEMICAL JOURNAL</title><addtitle>Geochem. J.</addtitle><description>Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions doped with NaHCO3 have been determined in pH = 8.1-8.6 and at room temperature and pressure. The coefficient is defined as Kd(REE: ppt./sol.), where REE designates each lanthanide (Ln), Y or Sc. The NaHCO3 concentration was changed in the range of (0∼12) × 10-3 M under a constant NaCl concentration (0.45 M). Kd(Sc) rapidly approaches Kd(Lu) as [NaHCO3] increases. Kd(Y) is lower than Kd(Ho) even in solutions with high [NaHCO3]. The convex tetrad effect in logKd(Ln) becomes less conspicuous with increasing [NaHCO3]. We proposed a method to determine REE-carbonate complexation constants from observed variations of Kd(REE) with increasing [CO32-, aq]. In solutions with [NaHCO3] ≥ 1 × 10-2 M, the dominant dissolved REE species are REE(CO3)2-(aq) except for La. We have tentatively determined the stability constants of β2 for REE(CO3)2-(aq) from our preliminary data set, although β1 for REECO3+(aq) could not be estimated. The series variation of logβ2 are compatible with literature values. On the basis of the refined spin-pairing energy theory (RSPET), we have analyzed the series variations of logβ2 and logKd(Ln) values with and without Ln(III)-carbonate complexation effect. Racah E1 parameter is approximately the same between Ln(OH)3·nH2O as the precipitate and Ln(CO3)2-(aq), whereas Racah E3 parameter of Ln(CO3)2-(aq) is only slightly larger than that of Ln(OH)3·nH2O. This is the reason that the convex tetrad effect of logKd(Ln) diminishes as Ln(III)-carbonate complexation proceeds. Our experimental logKd(Ln) values and apparent logKd(Ln) ones from marine Mn-Fe deposit/seawater pairs suggest that reported log(β1/β2) values for light Ln are slightly smaller than those ought to be.</description><issn>0016-7002</issn><issn>1880-5973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKfX3uYFuqU9S5teytycMBREr0uanGwZXTOSiOuVr27rdDfnwOH7_gM_Ifcpm2Qwg-kGndrifjcBmKQivSCjVAiW8LKASzJiLM2TgrHsmtyEsGMMZiUXI_L9aEP0tv6M1rVUOTTGKottDNQZ-rZY0BrjF2JLl0jdsdt22ruj1UgPHpU92CgjBipbTV_kvKHBNb9R_ckYVBE1rbshJ1HS167t6f7L_tDgUQ7cLbkysgl497fH5GO5eJ-vkvXr0_P8YZ1InrOYmNJkhVECZFFrzmXO80IxwUGIrMgzlhUZK3MogUst9Ay44UJLaVgNIi2yEsZkespV3oXg0VQHb_fSd1XKqqG_6r-_CqDq--uN1cnYhSg3eOalj1Y1eObTMs8HB06jV8-I2kpfYQs_PDKBYg</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Kawabe, Iwao</creator><creator>Ohta, Atsuyuki</creator><creator>Miura, Noriko</creator><general>GEOCHEMICAL SOCIETY OF JAPAN</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation</title><author>Kawabe, Iwao ; Ohta, Atsuyuki ; Miura, Noriko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a560t-f9f27fc83a7bd55a6567c085388276202720963935ad8d435f58daaf0b3817293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawabe, Iwao</creatorcontrib><creatorcontrib>Ohta, Atsuyuki</creatorcontrib><creatorcontrib>Miura, Noriko</creatorcontrib><collection>CrossRef</collection><jtitle>GEOCHEMICAL JOURNAL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawabe, Iwao</au><au>Ohta, Atsuyuki</au><au>Miura, Noriko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation</atitle><jtitle>GEOCHEMICAL JOURNAL</jtitle><addtitle>Geochem. J.</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>33</volume><issue>3</issue><spage>181</spage><epage>197</epage><pages>181-197</pages><issn>0016-7002</issn><eissn>1880-5973</eissn><abstract>Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions doped with NaHCO3 have been determined in pH = 8.1-8.6 and at room temperature and pressure. The coefficient is defined as Kd(REE: ppt./sol.), where REE designates each lanthanide (Ln), Y or Sc. The NaHCO3 concentration was changed in the range of (0∼12) × 10-3 M under a constant NaCl concentration (0.45 M). Kd(Sc) rapidly approaches Kd(Lu) as [NaHCO3] increases. Kd(Y) is lower than Kd(Ho) even in solutions with high [NaHCO3]. The convex tetrad effect in logKd(Ln) becomes less conspicuous with increasing [NaHCO3]. We proposed a method to determine REE-carbonate complexation constants from observed variations of Kd(REE) with increasing [CO32-, aq]. In solutions with [NaHCO3] ≥ 1 × 10-2 M, the dominant dissolved REE species are REE(CO3)2-(aq) except for La. We have tentatively determined the stability constants of β2 for REE(CO3)2-(aq) from our preliminary data set, although β1 for REECO3+(aq) could not be estimated. The series variation of logβ2 are compatible with literature values. On the basis of the refined spin-pairing energy theory (RSPET), we have analyzed the series variations of logβ2 and logKd(Ln) values with and without Ln(III)-carbonate complexation effect. Racah E1 parameter is approximately the same between Ln(OH)3·nH2O as the precipitate and Ln(CO3)2-(aq), whereas Racah E3 parameter of Ln(CO3)2-(aq) is only slightly larger than that of Ln(OH)3·nH2O. This is the reason that the convex tetrad effect of logKd(Ln) diminishes as Ln(III)-carbonate complexation proceeds. Our experimental logKd(Ln) values and apparent logKd(Ln) ones from marine Mn-Fe deposit/seawater pairs suggest that reported log(β1/β2) values for light Ln are slightly smaller than those ought to be.</abstract><pub>GEOCHEMICAL SOCIETY OF JAPAN</pub><doi>10.2343/geochemj.33.181</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7002 |
ispartof | GEOCHEMICAL JOURNAL, 1999/06/20, Vol.33(3), pp.181-197 |
issn | 0016-7002 1880-5973 |
language | eng |
recordid | cdi_crossref_primary_10_2343_geochemj_33_181 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Freely Accessible Japanese Titles; Free Full-Text Journals in Chemistry |
title | Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20coefficients%20of%20REE%20between%20Fe%20oxyhydroxide%20precipitates%20and%20NaCl%20solutions%20affected%20by%20REE-carbonate%20complexation&rft.jtitle=GEOCHEMICAL%20JOURNAL&rft.au=Kawabe,%20Iwao&rft.date=1999-01-01&rft.volume=33&rft.issue=3&rft.spage=181&rft.epage=197&rft.pages=181-197&rft.issn=0016-7002&rft.eissn=1880-5973&rft_id=info:doi/10.2343/geochemj.33.181&rft_dat=%3Cjstage_cross%3Earticle_geochemj1966_33_3_33_3_181_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |