Detecting Financial Statement Fraud through Multidimensional Analysis of Text Readability
This study uses Coh-Metrix to analyze multiple dimensions of readability of the MD&A section of the SEC Form 10-K. We incorporate the five main Coh-Metrix components of text easability (word concreteness, syntactic simplicity, referential cohesion, deep cohesion, and narrativity) into a logistic...
Gespeichert in:
Veröffentlicht in: | Journal of forensic accounting research 2023-12, Vol.8 (1), p.74-96 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | Journal of forensic accounting research |
container_volume | 8 |
creator | Yang, Fang David, Jeanne M. Chang, Chun-Chia |
description | This study uses Coh-Metrix to analyze multiple dimensions of readability of the MD&A section of the SEC Form 10-K. We incorporate the five main Coh-Metrix components of text easability (word concreteness, syntactic simplicity, referential cohesion, deep cohesion, and narrativity) into a logistic model to test their predictive power for financial misreporting. We find that compared to the MD&As of nonfraud firms, the MD&As of fraud firms connect clauses and sentences less coherently, use more story-like language, and show a higher number of vague and abstract words. Thus, referential cohesion, narrativity, and word concreteness significantly enhance predictive ability in fraud detection. The Coh-Metrix readability measures enhance the linguistic complexity assessment beyond traditional readability measures, such as the Fog Index and the Flesch Indexes. Financial analysts and investors can utilize the Coh-Metrix readability measures to supplement traditional readability measures and common financial statement variables in predicting financial misreporting.
Data Availability: Data are available from the public sources cited in the text.
JEL Classifications: G32; K42; M41; M48. |
doi_str_mv | 10.2308/JFAR-2021-019 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2308_JFAR_2021_019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2308_JFAR_2021_019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1219-9983c76684a2ebf560b29274cdee58a230fce2b7bdbf0ad5b10b6a7acd1d7ded3</originalsourceid><addsrcrecordid>eNpNkEtLxDAUhYMoOIyzdJ8_EM1j2qbLMlofjAjjuHBVbpLbmUinlSYF--9t0YWbcw6cw4X7EXIt-I1UXN8-l8WOSS4F4yI_IwupNGdSKH3-L1-SVQifnHORaZVotSAfdxjRRt8eaOlbaK2Hhr5FiHjCNtKyh8HReOy74XCkL0MTvfNTE3zXTsNikjH4QLua7vE70h2CA-MbH8crclFDE3D150vyXt7vN49s-_rwtCm2zAopcpbnWtksTfUaJJo6SbmRuczW1iEmGqbfaovSZMaZmoNLjOAmhQysEy5z6NSSsN-7tu9C6LGuvnp_gn6sBK9mNNWMpprRVBMa9QMB1lil</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Financial Statement Fraud through Multidimensional Analysis of Text Readability</title><source>Business Source Complete</source><creator>Yang, Fang ; David, Jeanne M. ; Chang, Chun-Chia</creator><creatorcontrib>Yang, Fang ; David, Jeanne M. ; Chang, Chun-Chia</creatorcontrib><description>This study uses Coh-Metrix to analyze multiple dimensions of readability of the MD&A section of the SEC Form 10-K. We incorporate the five main Coh-Metrix components of text easability (word concreteness, syntactic simplicity, referential cohesion, deep cohesion, and narrativity) into a logistic model to test their predictive power for financial misreporting. We find that compared to the MD&As of nonfraud firms, the MD&As of fraud firms connect clauses and sentences less coherently, use more story-like language, and show a higher number of vague and abstract words. Thus, referential cohesion, narrativity, and word concreteness significantly enhance predictive ability in fraud detection. The Coh-Metrix readability measures enhance the linguistic complexity assessment beyond traditional readability measures, such as the Fog Index and the Flesch Indexes. Financial analysts and investors can utilize the Coh-Metrix readability measures to supplement traditional readability measures and common financial statement variables in predicting financial misreporting.
Data Availability: Data are available from the public sources cited in the text.
JEL Classifications: G32; K42; M41; M48.</description><identifier>ISSN: 2380-2138</identifier><identifier>EISSN: 2380-2138</identifier><identifier>DOI: 10.2308/JFAR-2021-019</identifier><language>eng</language><ispartof>Journal of forensic accounting research, 2023-12, Vol.8 (1), p.74-96</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1219-9983c76684a2ebf560b29274cdee58a230fce2b7bdbf0ad5b10b6a7acd1d7ded3</citedby><cites>FETCH-LOGICAL-c1219-9983c76684a2ebf560b29274cdee58a230fce2b7bdbf0ad5b10b6a7acd1d7ded3</cites><orcidid>0000-0002-1915-6131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>David, Jeanne M.</creatorcontrib><creatorcontrib>Chang, Chun-Chia</creatorcontrib><title>Detecting Financial Statement Fraud through Multidimensional Analysis of Text Readability</title><title>Journal of forensic accounting research</title><description>This study uses Coh-Metrix to analyze multiple dimensions of readability of the MD&A section of the SEC Form 10-K. We incorporate the five main Coh-Metrix components of text easability (word concreteness, syntactic simplicity, referential cohesion, deep cohesion, and narrativity) into a logistic model to test their predictive power for financial misreporting. We find that compared to the MD&As of nonfraud firms, the MD&As of fraud firms connect clauses and sentences less coherently, use more story-like language, and show a higher number of vague and abstract words. Thus, referential cohesion, narrativity, and word concreteness significantly enhance predictive ability in fraud detection. The Coh-Metrix readability measures enhance the linguistic complexity assessment beyond traditional readability measures, such as the Fog Index and the Flesch Indexes. Financial analysts and investors can utilize the Coh-Metrix readability measures to supplement traditional readability measures and common financial statement variables in predicting financial misreporting.
Data Availability: Data are available from the public sources cited in the text.
JEL Classifications: G32; K42; M41; M48.</description><issn>2380-2138</issn><issn>2380-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAUhYMoOIyzdJ8_EM1j2qbLMlofjAjjuHBVbpLbmUinlSYF--9t0YWbcw6cw4X7EXIt-I1UXN8-l8WOSS4F4yI_IwupNGdSKH3-L1-SVQifnHORaZVotSAfdxjRRt8eaOlbaK2Hhr5FiHjCNtKyh8HReOy74XCkL0MTvfNTE3zXTsNikjH4QLua7vE70h2CA-MbH8crclFDE3D150vyXt7vN49s-_rwtCm2zAopcpbnWtksTfUaJJo6SbmRuczW1iEmGqbfaovSZMaZmoNLjOAmhQysEy5z6NSSsN-7tu9C6LGuvnp_gn6sBK9mNNWMpprRVBMa9QMB1lil</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yang, Fang</creator><creator>David, Jeanne M.</creator><creator>Chang, Chun-Chia</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1915-6131</orcidid></search><sort><creationdate>20231201</creationdate><title>Detecting Financial Statement Fraud through Multidimensional Analysis of Text Readability</title><author>Yang, Fang ; David, Jeanne M. ; Chang, Chun-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1219-9983c76684a2ebf560b29274cdee58a230fce2b7bdbf0ad5b10b6a7acd1d7ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>David, Jeanne M.</creatorcontrib><creatorcontrib>Chang, Chun-Chia</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of forensic accounting research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fang</au><au>David, Jeanne M.</au><au>Chang, Chun-Chia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Financial Statement Fraud through Multidimensional Analysis of Text Readability</atitle><jtitle>Journal of forensic accounting research</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>1</issue><spage>74</spage><epage>96</epage><pages>74-96</pages><issn>2380-2138</issn><eissn>2380-2138</eissn><abstract>This study uses Coh-Metrix to analyze multiple dimensions of readability of the MD&A section of the SEC Form 10-K. We incorporate the five main Coh-Metrix components of text easability (word concreteness, syntactic simplicity, referential cohesion, deep cohesion, and narrativity) into a logistic model to test their predictive power for financial misreporting. We find that compared to the MD&As of nonfraud firms, the MD&As of fraud firms connect clauses and sentences less coherently, use more story-like language, and show a higher number of vague and abstract words. Thus, referential cohesion, narrativity, and word concreteness significantly enhance predictive ability in fraud detection. The Coh-Metrix readability measures enhance the linguistic complexity assessment beyond traditional readability measures, such as the Fog Index and the Flesch Indexes. Financial analysts and investors can utilize the Coh-Metrix readability measures to supplement traditional readability measures and common financial statement variables in predicting financial misreporting.
Data Availability: Data are available from the public sources cited in the text.
JEL Classifications: G32; K42; M41; M48.</abstract><doi>10.2308/JFAR-2021-019</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-1915-6131</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-2138 |
ispartof | Journal of forensic accounting research, 2023-12, Vol.8 (1), p.74-96 |
issn | 2380-2138 2380-2138 |
language | eng |
recordid | cdi_crossref_primary_10_2308_JFAR_2021_019 |
source | Business Source Complete |
title | Detecting Financial Statement Fraud through Multidimensional Analysis of Text Readability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Financial%20Statement%20Fraud%20through%20Multidimensional%20Analysis%20of%20Text%20Readability&rft.jtitle=Journal%20of%20forensic%20accounting%20research&rft.au=Yang,%20Fang&rft.date=2023-12-01&rft.volume=8&rft.issue=1&rft.spage=74&rft.epage=96&rft.pages=74-96&rft.issn=2380-2138&rft.eissn=2380-2138&rft_id=info:doi/10.2308/JFAR-2021-019&rft_dat=%3Ccrossref%3E10_2308_JFAR_2021_019%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |