A Structure Theorem for Actions of Semisimple Lie Groups

We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics 2002-09, Vol.156 (2), p.565-594
Hauptverfasser: Nevo, Amos, Zimmer, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 2
container_start_page 565
container_title Annals of mathematics
container_volume 156
creator Nevo, Amos
Zimmer, Robert J.
description We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space.
doi_str_mv 10.2307/3597198
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3597198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3597198</jstor_id><sourcerecordid>3597198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-5a7a9dec6305b3e4ae5f6f1adf1253cf97f22889a6f6acc20979d334ba4db1b33</originalsourceid><addsrcrecordid>eNp1j09LwzAchoMoWKf4FXJQPFXzr01-xzHcFAoeNsFbSdMEM9qlJO3Bb-9GB548vbzw8MCD0D0lz4wT-cILkBTUBcoocMgVKHKJMkIIz4Uqv67RTUr745WylBlSS7wd42TGKVq8-7Yh2h67EPHSjD4cEg4Ob23vk--HzuLKW7yJYRrSLbpyukv27rwL9Ll-3a3e8upj875aVrlhio15oaWG1pqSk6LhVmhbuNJR3TrKCm4cSMeYUqBLV2pjGAEJLeei0aJtaMP5Aj3NXhNDStG6eoi-1_GnpqQ-Bdfn4CP5OJODTkZ3LuqD8ekPF4QCiJPxYeb2aQzxX90vUNlfhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Structure Theorem for Actions of Semisimple Lie Groups</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Nevo, Amos ; Zimmer, Robert J.</creator><creatorcontrib>Nevo, Amos ; Zimmer, Robert J.</creatorcontrib><description>We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space.</description><identifier>ISSN: 0003-486X</identifier><identifier>EISSN: 1939-8980</identifier><identifier>DOI: 10.2307/3597198</identifier><identifier>CODEN: ANMAAH</identifier><language>eng</language><publisher>Princeton, NJ: Princeton University Press</publisher><subject>Algebra ; Algebraic conjugates ; Coordinate systems ; Entropy ; Ergodic theory ; Exact sciences and technology ; Group theory ; Haar measures ; Lie groups ; Mathematical functions ; Mathematical theorems ; Mathematics ; Sciences and techniques of general use ; Topological groups, lie groups</subject><ispartof>Annals of mathematics, 2002-09, Vol.156 (2), p.565-594</ispartof><rights>Copyright 2002 Princeton University (Mathematics Department)</rights><rights>2003 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-5a7a9dec6305b3e4ae5f6f1adf1253cf97f22889a6f6acc20979d334ba4db1b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3597198$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3597198$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14019943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nevo, Amos</creatorcontrib><creatorcontrib>Zimmer, Robert J.</creatorcontrib><title>A Structure Theorem for Actions of Semisimple Lie Groups</title><title>Annals of mathematics</title><description>We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space.</description><subject>Algebra</subject><subject>Algebraic conjugates</subject><subject>Coordinate systems</subject><subject>Entropy</subject><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>Group theory</subject><subject>Haar measures</subject><subject>Lie groups</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Topological groups, lie groups</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j09LwzAchoMoWKf4FXJQPFXzr01-xzHcFAoeNsFbSdMEM9qlJO3Bb-9GB548vbzw8MCD0D0lz4wT-cILkBTUBcoocMgVKHKJMkIIz4Uqv67RTUr745WylBlSS7wd42TGKVq8-7Yh2h67EPHSjD4cEg4Ob23vk--HzuLKW7yJYRrSLbpyukv27rwL9Ll-3a3e8upj875aVrlhio15oaWG1pqSk6LhVmhbuNJR3TrKCm4cSMeYUqBLV2pjGAEJLeei0aJtaMP5Aj3NXhNDStG6eoi-1_GnpqQ-Bdfn4CP5OJODTkZ3LuqD8ekPF4QCiJPxYeb2aQzxX90vUNlfhg</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Nevo, Amos</creator><creator>Zimmer, Robert J.</creator><general>Princeton University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020901</creationdate><title>A Structure Theorem for Actions of Semisimple Lie Groups</title><author>Nevo, Amos ; Zimmer, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-5a7a9dec6305b3e4ae5f6f1adf1253cf97f22889a6f6acc20979d334ba4db1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algebra</topic><topic>Algebraic conjugates</topic><topic>Coordinate systems</topic><topic>Entropy</topic><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>Group theory</topic><topic>Haar measures</topic><topic>Lie groups</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Topological groups, lie groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Nevo, Amos</creatorcontrib><creatorcontrib>Zimmer, Robert J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nevo, Amos</au><au>Zimmer, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Structure Theorem for Actions of Semisimple Lie Groups</atitle><jtitle>Annals of mathematics</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>156</volume><issue>2</issue><spage>565</spage><epage>594</epage><pages>565-594</pages><issn>0003-486X</issn><eissn>1939-8980</eissn><coden>ANMAAH</coden><abstract>We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space.</abstract><cop>Princeton, NJ</cop><pub>Princeton University Press</pub><doi>10.2307/3597198</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-486X
ispartof Annals of mathematics, 2002-09, Vol.156 (2), p.565-594
issn 0003-486X
1939-8980
language eng
recordid cdi_crossref_primary_10_2307_3597198
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Algebra
Algebraic conjugates
Coordinate systems
Entropy
Ergodic theory
Exact sciences and technology
Group theory
Haar measures
Lie groups
Mathematical functions
Mathematical theorems
Mathematics
Sciences and techniques of general use
Topological groups, lie groups
title A Structure Theorem for Actions of Semisimple Lie Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Structure%20Theorem%20for%20Actions%20of%20Semisimple%20Lie%20Groups&rft.jtitle=Annals%20of%20mathematics&rft.au=Nevo,%20Amos&rft.date=2002-09-01&rft.volume=156&rft.issue=2&rft.spage=565&rft.epage=594&rft.pages=565-594&rft.issn=0003-486X&rft.eissn=1939-8980&rft.coden=ANMAAH&rft_id=info:doi/10.2307/3597198&rft_dat=%3Cjstor_cross%3E3597198%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3597198&rfr_iscdi=true