A Structure Theorem for Actions of Semisimple Lie Groups
We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then pr...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics 2002-09, Vol.156 (2), p.565-594 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 594 |
---|---|
container_issue | 2 |
container_start_page | 565 |
container_title | Annals of mathematics |
container_volume | 156 |
creator | Nevo, Amos Zimmer, Robert J. |
description | We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space. |
doi_str_mv | 10.2307/3597198 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3597198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3597198</jstor_id><sourcerecordid>3597198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-5a7a9dec6305b3e4ae5f6f1adf1253cf97f22889a6f6acc20979d334ba4db1b33</originalsourceid><addsrcrecordid>eNp1j09LwzAchoMoWKf4FXJQPFXzr01-xzHcFAoeNsFbSdMEM9qlJO3Bb-9GB548vbzw8MCD0D0lz4wT-cILkBTUBcoocMgVKHKJMkIIz4Uqv67RTUr745WylBlSS7wd42TGKVq8-7Yh2h67EPHSjD4cEg4Ob23vk--HzuLKW7yJYRrSLbpyukv27rwL9Ll-3a3e8upj875aVrlhio15oaWG1pqSk6LhVmhbuNJR3TrKCm4cSMeYUqBLV2pjGAEJLeei0aJtaMP5Aj3NXhNDStG6eoi-1_GnpqQ-Bdfn4CP5OJODTkZ3LuqD8ekPF4QCiJPxYeb2aQzxX90vUNlfhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Structure Theorem for Actions of Semisimple Lie Groups</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Nevo, Amos ; Zimmer, Robert J.</creator><creatorcontrib>Nevo, Amos ; Zimmer, Robert J.</creatorcontrib><description>We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space.</description><identifier>ISSN: 0003-486X</identifier><identifier>EISSN: 1939-8980</identifier><identifier>DOI: 10.2307/3597198</identifier><identifier>CODEN: ANMAAH</identifier><language>eng</language><publisher>Princeton, NJ: Princeton University Press</publisher><subject>Algebra ; Algebraic conjugates ; Coordinate systems ; Entropy ; Ergodic theory ; Exact sciences and technology ; Group theory ; Haar measures ; Lie groups ; Mathematical functions ; Mathematical theorems ; Mathematics ; Sciences and techniques of general use ; Topological groups, lie groups</subject><ispartof>Annals of mathematics, 2002-09, Vol.156 (2), p.565-594</ispartof><rights>Copyright 2002 Princeton University (Mathematics Department)</rights><rights>2003 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-5a7a9dec6305b3e4ae5f6f1adf1253cf97f22889a6f6acc20979d334ba4db1b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3597198$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3597198$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14019943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nevo, Amos</creatorcontrib><creatorcontrib>Zimmer, Robert J.</creatorcontrib><title>A Structure Theorem for Actions of Semisimple Lie Groups</title><title>Annals of mathematics</title><description>We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space.</description><subject>Algebra</subject><subject>Algebraic conjugates</subject><subject>Coordinate systems</subject><subject>Entropy</subject><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>Group theory</subject><subject>Haar measures</subject><subject>Lie groups</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Topological groups, lie groups</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1j09LwzAchoMoWKf4FXJQPFXzr01-xzHcFAoeNsFbSdMEM9qlJO3Bb-9GB548vbzw8MCD0D0lz4wT-cILkBTUBcoocMgVKHKJMkIIz4Uqv67RTUr745WylBlSS7wd42TGKVq8-7Yh2h67EPHSjD4cEg4Ob23vk--HzuLKW7yJYRrSLbpyukv27rwL9Ll-3a3e8upj875aVrlhio15oaWG1pqSk6LhVmhbuNJR3TrKCm4cSMeYUqBLV2pjGAEJLeei0aJtaMP5Aj3NXhNDStG6eoi-1_GnpqQ-Bdfn4CP5OJODTkZ3LuqD8ekPF4QCiJPxYeb2aQzxX90vUNlfhg</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Nevo, Amos</creator><creator>Zimmer, Robert J.</creator><general>Princeton University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020901</creationdate><title>A Structure Theorem for Actions of Semisimple Lie Groups</title><author>Nevo, Amos ; Zimmer, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-5a7a9dec6305b3e4ae5f6f1adf1253cf97f22889a6f6acc20979d334ba4db1b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algebra</topic><topic>Algebraic conjugates</topic><topic>Coordinate systems</topic><topic>Entropy</topic><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>Group theory</topic><topic>Haar measures</topic><topic>Lie groups</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Topological groups, lie groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Nevo, Amos</creatorcontrib><creatorcontrib>Zimmer, Robert J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nevo, Amos</au><au>Zimmer, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Structure Theorem for Actions of Semisimple Lie Groups</atitle><jtitle>Annals of mathematics</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>156</volume><issue>2</issue><spage>565</spage><epage>594</epage><pages>565-594</pages><issn>0003-486X</issn><eissn>1939-8980</eissn><coden>ANMAAH</coden><abstract>We consider a connected semisimple Lie group G with finite center, an admissible probability measure μ on G, and an ergodic (G, μ)-space (X, ν). We first note (Lemma 0.1) that (X, ν) has a unique maximal projective factor of the form$(G/Q,\nu _{0})$, where Q is a parabolic subgroup of G, and then prove: 1. Theorem 1. If every noncompact simple factor of G has real rank at least two, then the maximal projective factor is nontrivial, unless ν is a G-invariant measure. 2. Theorem 2. For any G of real rank at least two, if the action has positive entropy and fails to have nontrivial projective factor, then (X, ν) has an equivariant factor space with the same properties, on which G acts via a real-rank-one factor group. 3. Theorem 3. Write$\nu =\nu _{0}\ast \lambda $, where λ is a P-invariant measure, P = MSV a minimal parabolic subgroup [F2], [NZ1]. If the entropy$h_{\mu}(G/P,\nu _{0})$is finite, and every nontrivial element of S is ergodic on (X, λ) (or just a well chosen finite set, Theorem 9.1), then (X, ν) is a measure-preserving extension of its maximal projective factor. 4. The foregoing results are best possible (see §11, in particular Theorem 11.4). We also give some corollaries and applications of the main results. These include an entropy characterization of amenable actions, an explicit entropy criterion for the invariance of ν, and construction of a projective factor for an action of a lattice in G on a compact metric space.</abstract><cop>Princeton, NJ</cop><pub>Princeton University Press</pub><doi>10.2307/3597198</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-486X |
ispartof | Annals of mathematics, 2002-09, Vol.156 (2), p.565-594 |
issn | 0003-486X 1939-8980 |
language | eng |
recordid | cdi_crossref_primary_10_2307_3597198 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Algebra Algebraic conjugates Coordinate systems Entropy Ergodic theory Exact sciences and technology Group theory Haar measures Lie groups Mathematical functions Mathematical theorems Mathematics Sciences and techniques of general use Topological groups, lie groups |
title | A Structure Theorem for Actions of Semisimple Lie Groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Structure%20Theorem%20for%20Actions%20of%20Semisimple%20Lie%20Groups&rft.jtitle=Annals%20of%20mathematics&rft.au=Nevo,%20Amos&rft.date=2002-09-01&rft.volume=156&rft.issue=2&rft.spage=565&rft.epage=594&rft.pages=565-594&rft.issn=0003-486X&rft.eissn=1939-8980&rft.coden=ANMAAH&rft_id=info:doi/10.2307/3597198&rft_dat=%3Cjstor_cross%3E3597198%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3597198&rfr_iscdi=true |