Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis
Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites...
Gespeichert in:
Veröffentlicht in: | Journal of vegetation science 1997-06, Vol.8 (3), p.387-394 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | 3 |
container_start_page | 387 |
container_title | Journal of vegetation science |
container_volume | 8 |
creator | Lauver, Chris L. |
description | Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data. |
doi_str_mv | 10.2307/3237328 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3237328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3237328</jstor_id><sourcerecordid>3237328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</originalsourceid><addsrcrecordid>eNp10MtO3DAUBuCoolKBIl6gqrxjgQJ2nMTxshoGyq1dQKnUjXXGOQ6mQxL5WJS8fT0KghXe-PJ_-i2dLNsX_KiQXB3LQipZNB-ybVFXZS4El1vpLDjPdSHlp2yH6IFzoXQttrPnaxhH33eMRrQeibX-CQP5OLERYsTQE_M9i_fILqEnIEb3Q4hdACIWsPNDz1ZTIhHTW9w0BXwcIjLCnjZX6Fv2hB3GlCYMPawn8vQ5--hgTbj3su9mv06Xt4vv-dXPs_PFt6vcllzpHIoVlBV3sq7BClcKC9WqxcqqtrZF0-rScm4b5ZqVLsE665RGy0VaTrdcy93sYO61YSAK6MwY_COEyQhuNgMzLwNL8nCW__wap_eYubi7aYpN75dZP1Acwqt-K8vn2FPE59cYwl9TK6kq8_vHmTkt5MXJn0VtRPJfZ-9gMNAFT-ZmKbRWXKTPdSn_Aw6BjwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lauver, Chris L.</creator><creatorcontrib>Lauver, Chris L. ; Kansas Biological Survey, Lawrence (USA)</creatorcontrib><description>Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.</description><identifier>ISSN: 1100-9233</identifier><identifier>EISSN: 1654-1103</identifier><identifier>DOI: 10.2307/3237328</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Anon. ; biodiversidad ; biodiversite ; biodiversity ; clasificacion ; Classification ; Cover ; Forbs ; Grasses ; Grassland ; grasslands ; Grazing ; herbage ; Kansas ; Land cover ; Landsat ; pastoreo ; paturage ; Pixels ; Plants ; praderas ; Rangelands ; remote sensing ; Satellite imagery ; Species diversity ; Species richness ; teledeteccion ; teledetection ; vegetacion ; Vegetation</subject><ispartof>Journal of vegetation science, 1997-06, Vol.8 (3), p.387-394</ispartof><rights>Copyright 1997 IAVS; Opulus Press Uppsala</rights><rights>1997 IAVS ‐ the International Association of Vegetation Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</citedby><cites>FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3237328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3237328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Lauver, Chris L.</creatorcontrib><creatorcontrib>Kansas Biological Survey, Lawrence (USA)</creatorcontrib><title>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</title><title>Journal of vegetation science</title><description>Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.</description><subject>Anon.</subject><subject>biodiversidad</subject><subject>biodiversite</subject><subject>biodiversity</subject><subject>clasificacion</subject><subject>Classification</subject><subject>Cover</subject><subject>Forbs</subject><subject>Grasses</subject><subject>Grassland</subject><subject>grasslands</subject><subject>Grazing</subject><subject>herbage</subject><subject>Kansas</subject><subject>Land cover</subject><subject>Landsat</subject><subject>pastoreo</subject><subject>paturage</subject><subject>Pixels</subject><subject>Plants</subject><subject>praderas</subject><subject>Rangelands</subject><subject>remote sensing</subject><subject>Satellite imagery</subject><subject>Species diversity</subject><subject>Species richness</subject><subject>teledeteccion</subject><subject>teledetection</subject><subject>vegetacion</subject><subject>Vegetation</subject><issn>1100-9233</issn><issn>1654-1103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp10MtO3DAUBuCoolKBIl6gqrxjgQJ2nMTxshoGyq1dQKnUjXXGOQ6mQxL5WJS8fT0KghXe-PJ_-i2dLNsX_KiQXB3LQipZNB-ybVFXZS4El1vpLDjPdSHlp2yH6IFzoXQttrPnaxhH33eMRrQeibX-CQP5OLERYsTQE_M9i_fILqEnIEb3Q4hdACIWsPNDz1ZTIhHTW9w0BXwcIjLCnjZX6Fv2hB3GlCYMPawn8vQ5--hgTbj3su9mv06Xt4vv-dXPs_PFt6vcllzpHIoVlBV3sq7BClcKC9WqxcqqtrZF0-rScm4b5ZqVLsE665RGy0VaTrdcy93sYO61YSAK6MwY_COEyQhuNgMzLwNL8nCW__wap_eYubi7aYpN75dZP1Acwqt-K8vn2FPE59cYwl9TK6kq8_vHmTkt5MXJn0VtRPJfZ-9gMNAFT-ZmKbRWXKTPdSn_Aw6BjwI</recordid><startdate>199706</startdate><enddate>199706</enddate><creator>Lauver, Chris L.</creator><general>Blackwell Publishing Ltd</general><general>Opulus Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199706</creationdate><title>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</title><author>Lauver, Chris L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Anon.</topic><topic>biodiversidad</topic><topic>biodiversite</topic><topic>biodiversity</topic><topic>clasificacion</topic><topic>Classification</topic><topic>Cover</topic><topic>Forbs</topic><topic>Grasses</topic><topic>Grassland</topic><topic>grasslands</topic><topic>Grazing</topic><topic>herbage</topic><topic>Kansas</topic><topic>Land cover</topic><topic>Landsat</topic><topic>pastoreo</topic><topic>paturage</topic><topic>Pixels</topic><topic>Plants</topic><topic>praderas</topic><topic>Rangelands</topic><topic>remote sensing</topic><topic>Satellite imagery</topic><topic>Species diversity</topic><topic>Species richness</topic><topic>teledeteccion</topic><topic>teledetection</topic><topic>vegetacion</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauver, Chris L.</creatorcontrib><creatorcontrib>Kansas Biological Survey, Lawrence (USA)</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of vegetation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauver, Chris L.</au><aucorp>Kansas Biological Survey, Lawrence (USA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</atitle><jtitle>Journal of vegetation science</jtitle><date>1997-06</date><risdate>1997</risdate><volume>8</volume><issue>3</issue><spage>387</spage><epage>394</epage><pages>387-394</pages><issn>1100-9233</issn><eissn>1654-1103</eissn><abstract>Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.2307/3237328</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1100-9233 |
ispartof | Journal of vegetation science, 1997-06, Vol.8 (3), p.387-394 |
issn | 1100-9233 1654-1103 |
language | eng |
recordid | cdi_crossref_primary_10_2307_3237328 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete |
subjects | Anon. biodiversidad biodiversite biodiversity clasificacion Classification Cover Forbs Grasses Grassland grasslands Grazing herbage Kansas Land cover Landsat pastoreo paturage Pixels Plants praderas Rangelands remote sensing Satellite imagery Species diversity Species richness teledeteccion teledetection vegetacion Vegetation |
title | Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20species%20diversity%20patterns%20in%20the%20Kansas%20shortgrass%20region%20by%20integrating%20remote%20sensing%20and%20vegetation%20analysis&rft.jtitle=Journal%20of%20vegetation%20science&rft.au=Lauver,%20Chris%20L.&rft.aucorp=Kansas%20Biological%20Survey,%20Lawrence%20(USA)&rft.date=1997-06&rft.volume=8&rft.issue=3&rft.spage=387&rft.epage=394&rft.pages=387-394&rft.issn=1100-9233&rft.eissn=1654-1103&rft_id=info:doi/10.2307/3237328&rft_dat=%3Cjstor_cross%3E3237328%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3237328&rfr_iscdi=true |