Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis

Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vegetation science 1997-06, Vol.8 (3), p.387-394
1. Verfasser: Lauver, Chris L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 3
container_start_page 387
container_title Journal of vegetation science
container_volume 8
creator Lauver, Chris L.
description Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.
doi_str_mv 10.2307/3237328
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3237328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3237328</jstor_id><sourcerecordid>3237328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</originalsourceid><addsrcrecordid>eNp10MtO3DAUBuCoolKBIl6gqrxjgQJ2nMTxshoGyq1dQKnUjXXGOQ6mQxL5WJS8fT0KghXe-PJ_-i2dLNsX_KiQXB3LQipZNB-ybVFXZS4El1vpLDjPdSHlp2yH6IFzoXQttrPnaxhH33eMRrQeibX-CQP5OLERYsTQE_M9i_fILqEnIEb3Q4hdACIWsPNDz1ZTIhHTW9w0BXwcIjLCnjZX6Fv2hB3GlCYMPawn8vQ5--hgTbj3su9mv06Xt4vv-dXPs_PFt6vcllzpHIoVlBV3sq7BClcKC9WqxcqqtrZF0-rScm4b5ZqVLsE665RGy0VaTrdcy93sYO61YSAK6MwY_COEyQhuNgMzLwNL8nCW__wap_eYubi7aYpN75dZP1Acwqt-K8vn2FPE59cYwl9TK6kq8_vHmTkt5MXJn0VtRPJfZ-9gMNAFT-ZmKbRWXKTPdSn_Aw6BjwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lauver, Chris L.</creator><creatorcontrib>Lauver, Chris L. ; Kansas Biological Survey, Lawrence (USA)</creatorcontrib><description>Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.</description><identifier>ISSN: 1100-9233</identifier><identifier>EISSN: 1654-1103</identifier><identifier>DOI: 10.2307/3237328</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Anon. ; biodiversidad ; biodiversite ; biodiversity ; clasificacion ; Classification ; Cover ; Forbs ; Grasses ; Grassland ; grasslands ; Grazing ; herbage ; Kansas ; Land cover ; Landsat ; pastoreo ; paturage ; Pixels ; Plants ; praderas ; Rangelands ; remote sensing ; Satellite imagery ; Species diversity ; Species richness ; teledeteccion ; teledetection ; vegetacion ; Vegetation</subject><ispartof>Journal of vegetation science, 1997-06, Vol.8 (3), p.387-394</ispartof><rights>Copyright 1997 IAVS; Opulus Press Uppsala</rights><rights>1997 IAVS ‐ the International Association of Vegetation Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</citedby><cites>FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3237328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3237328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Lauver, Chris L.</creatorcontrib><creatorcontrib>Kansas Biological Survey, Lawrence (USA)</creatorcontrib><title>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</title><title>Journal of vegetation science</title><description>Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.</description><subject>Anon.</subject><subject>biodiversidad</subject><subject>biodiversite</subject><subject>biodiversity</subject><subject>clasificacion</subject><subject>Classification</subject><subject>Cover</subject><subject>Forbs</subject><subject>Grasses</subject><subject>Grassland</subject><subject>grasslands</subject><subject>Grazing</subject><subject>herbage</subject><subject>Kansas</subject><subject>Land cover</subject><subject>Landsat</subject><subject>pastoreo</subject><subject>paturage</subject><subject>Pixels</subject><subject>Plants</subject><subject>praderas</subject><subject>Rangelands</subject><subject>remote sensing</subject><subject>Satellite imagery</subject><subject>Species diversity</subject><subject>Species richness</subject><subject>teledeteccion</subject><subject>teledetection</subject><subject>vegetacion</subject><subject>Vegetation</subject><issn>1100-9233</issn><issn>1654-1103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp10MtO3DAUBuCoolKBIl6gqrxjgQJ2nMTxshoGyq1dQKnUjXXGOQ6mQxL5WJS8fT0KghXe-PJ_-i2dLNsX_KiQXB3LQipZNB-ybVFXZS4El1vpLDjPdSHlp2yH6IFzoXQttrPnaxhH33eMRrQeibX-CQP5OLERYsTQE_M9i_fILqEnIEb3Q4hdACIWsPNDz1ZTIhHTW9w0BXwcIjLCnjZX6Fv2hB3GlCYMPawn8vQ5--hgTbj3su9mv06Xt4vv-dXPs_PFt6vcllzpHIoVlBV3sq7BClcKC9WqxcqqtrZF0-rScm4b5ZqVLsE665RGy0VaTrdcy93sYO61YSAK6MwY_COEyQhuNgMzLwNL8nCW__wap_eYubi7aYpN75dZP1Acwqt-K8vn2FPE59cYwl9TK6kq8_vHmTkt5MXJn0VtRPJfZ-9gMNAFT-ZmKbRWXKTPdSn_Aw6BjwI</recordid><startdate>199706</startdate><enddate>199706</enddate><creator>Lauver, Chris L.</creator><general>Blackwell Publishing Ltd</general><general>Opulus Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199706</creationdate><title>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</title><author>Lauver, Chris L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4079-a2ba450f366ac1f41ca5bde5c7d6c28d94c00c87f8b94acfcf79ec01111f9d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Anon.</topic><topic>biodiversidad</topic><topic>biodiversite</topic><topic>biodiversity</topic><topic>clasificacion</topic><topic>Classification</topic><topic>Cover</topic><topic>Forbs</topic><topic>Grasses</topic><topic>Grassland</topic><topic>grasslands</topic><topic>Grazing</topic><topic>herbage</topic><topic>Kansas</topic><topic>Land cover</topic><topic>Landsat</topic><topic>pastoreo</topic><topic>paturage</topic><topic>Pixels</topic><topic>Plants</topic><topic>praderas</topic><topic>Rangelands</topic><topic>remote sensing</topic><topic>Satellite imagery</topic><topic>Species diversity</topic><topic>Species richness</topic><topic>teledeteccion</topic><topic>teledetection</topic><topic>vegetacion</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauver, Chris L.</creatorcontrib><creatorcontrib>Kansas Biological Survey, Lawrence (USA)</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of vegetation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauver, Chris L.</au><aucorp>Kansas Biological Survey, Lawrence (USA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis</atitle><jtitle>Journal of vegetation science</jtitle><date>1997-06</date><risdate>1997</risdate><volume>8</volume><issue>3</issue><spage>387</spage><epage>394</epage><pages>387-394</pages><issn>1100-9233</issn><eissn>1654-1103</eissn><abstract>Field reconnaissance data are used in a supervised classification of a 1989 Landsat Thematic Mapper (TM) scene to create a digital database of high and low quality grasslands for northwestern Kansas. To test the classification of grassland quality, plot-based vegetation data collected from 32 sites are analyzed for differences in species composition, and evaluated for relationships between TM data and plant diversity. Significant differences between predicted high and low quality grassland sites are identified for the following variables: cover of the dominant and common species, overall species richness, number of forbs, number of grasses, and plant diversity using Shannon's index. Linear regression analysis reveals a significant relationship (r2 = 0.61) between species diversity and the prediction of grassland quality from the supervised classification. The addition of spectral data to this model did not improve the prediction of species diversity, but spectral brightness is identified as a key feature in mapping shortgrass vegetation diversity patterns with TM data.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.2307/3237328</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1100-9233
ispartof Journal of vegetation science, 1997-06, Vol.8 (3), p.387-394
issn 1100-9233
1654-1103
language eng
recordid cdi_crossref_primary_10_2307_3237328
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Anon.
biodiversidad
biodiversite
biodiversity
clasificacion
Classification
Cover
Forbs
Grasses
Grassland
grasslands
Grazing
herbage
Kansas
Land cover
Landsat
pastoreo
paturage
Pixels
Plants
praderas
Rangelands
remote sensing
Satellite imagery
Species diversity
Species richness
teledeteccion
teledetection
vegetacion
Vegetation
title Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20species%20diversity%20patterns%20in%20the%20Kansas%20shortgrass%20region%20by%20integrating%20remote%20sensing%20and%20vegetation%20analysis&rft.jtitle=Journal%20of%20vegetation%20science&rft.au=Lauver,%20Chris%20L.&rft.aucorp=Kansas%20Biological%20Survey,%20Lawrence%20(USA)&rft.date=1997-06&rft.volume=8&rft.issue=3&rft.spage=387&rft.epage=394&rft.pages=387-394&rft.issn=1100-9233&rft.eissn=1654-1103&rft_id=info:doi/10.2307/3237328&rft_dat=%3Cjstor_cross%3E3237328%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3237328&rfr_iscdi=true