Geomorphic principles of terrain organization and vegetation gradients
Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hil...
Gespeichert in:
Veröffentlicht in: | Journal of vegetation science 2000-02, Vol.11 (1), p.57-70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | Journal of vegetation science |
container_volume | 11 |
creator | Bridge, S.R.J Johnson, E.A |
description | Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments. |
doi_str_mv | 10.2307/3236776 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3236776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3236776</jstor_id><sourcerecordid>3236776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</originalsourceid><addsrcrecordid>eNp10FFLwzAQB_AgCs4pfgHBvvkg1UsuTdpHGW5Thj5s08eQtunM3JqRFHV-eisd88mnXLgfx_2PkHMKNwxB3iJDIaU4ID0qEh5TCnjY1hQgzhjiMTkJYQlAZSZojwxHxq2d37zZItp4Wxd2szIhclXUGO-1rSPnF7q237qxro50XUYfZmGa7rvwurSmbsIpOar0Kpiz3dsn8-H9bDCOJ8-jh8HdJC6QszQWArRAwbkwpSmFzNNCIiYVZhlLBIUE80wmOTWlllXKOOa8DcG0TLHMdZljn1x1cwvvQvCmUu3Sa-23ioL6ja928Vt53clPuzLb_5h6fJlSlrb6otPL0Di_13_D4q5tQ2O-9m3t35WQKBP1-jRSfJbOcDwBlbX-svOVdkovvA1qPmVAeXv3BAQA_gCNhHrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geomorphic principles of terrain organization and vegetation gradients</title><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bridge, S.R.J ; Johnson, E.A</creator><creatorcontrib>Bridge, S.R.J ; Johnson, E.A</creatorcontrib><description>Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.</description><identifier>ISSN: 1100-9233</identifier><identifier>EISSN: 1654-1103</identifier><identifier>DOI: 10.2307/3236776</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Allometric equation ; boreal forests ; botanical composition ; Dynamics ; equations ; Forest ecology ; Geomorphology ; Glacial landforms ; Glacial till ; Hill slope ; Hills ; Landscape ecology ; landscapes ; Mixed-wood boreal forest ; Moisture gradient ; Moss ; Nutrient gradient ; nutrients ; Ordination ; Principal components analysis ; Sloping terrain ; Soil water ; topographic slope ; Toposequence ; Vegetation ; Vegetation structure</subject><ispartof>Journal of vegetation science, 2000-02, Vol.11 (1), p.57-70</ispartof><rights>Copyright 2000 IAVS; Opulus Press Uppsala</rights><rights>2000 IAVS ‐ the International Association of Vegetation Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</citedby><cites>FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3236776$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3236776$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>Bridge, S.R.J</creatorcontrib><creatorcontrib>Johnson, E.A</creatorcontrib><title>Geomorphic principles of terrain organization and vegetation gradients</title><title>Journal of vegetation science</title><description>Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.</description><subject>Allometric equation</subject><subject>boreal forests</subject><subject>botanical composition</subject><subject>Dynamics</subject><subject>equations</subject><subject>Forest ecology</subject><subject>Geomorphology</subject><subject>Glacial landforms</subject><subject>Glacial till</subject><subject>Hill slope</subject><subject>Hills</subject><subject>Landscape ecology</subject><subject>landscapes</subject><subject>Mixed-wood boreal forest</subject><subject>Moisture gradient</subject><subject>Moss</subject><subject>Nutrient gradient</subject><subject>nutrients</subject><subject>Ordination</subject><subject>Principal components analysis</subject><subject>Sloping terrain</subject><subject>Soil water</subject><subject>topographic slope</subject><subject>Toposequence</subject><subject>Vegetation</subject><subject>Vegetation structure</subject><issn>1100-9233</issn><issn>1654-1103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQB_AgCs4pfgHBvvkg1UsuTdpHGW5Thj5s08eQtunM3JqRFHV-eisd88mnXLgfx_2PkHMKNwxB3iJDIaU4ID0qEh5TCnjY1hQgzhjiMTkJYQlAZSZojwxHxq2d37zZItp4Wxd2szIhclXUGO-1rSPnF7q237qxro50XUYfZmGa7rvwurSmbsIpOar0Kpiz3dsn8-H9bDCOJ8-jh8HdJC6QszQWArRAwbkwpSmFzNNCIiYVZhlLBIUE80wmOTWlllXKOOa8DcG0TLHMdZljn1x1cwvvQvCmUu3Sa-23ioL6ja928Vt53clPuzLb_5h6fJlSlrb6otPL0Di_13_D4q5tQ2O-9m3t35WQKBP1-jRSfJbOcDwBlbX-svOVdkovvA1qPmVAeXv3BAQA_gCNhHrI</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Bridge, S.R.J</creator><creator>Johnson, E.A</creator><general>Blackwell Publishing Ltd</general><general>Opulus Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200002</creationdate><title>Geomorphic principles of terrain organization and vegetation gradients</title><author>Bridge, S.R.J ; Johnson, E.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Allometric equation</topic><topic>boreal forests</topic><topic>botanical composition</topic><topic>Dynamics</topic><topic>equations</topic><topic>Forest ecology</topic><topic>Geomorphology</topic><topic>Glacial landforms</topic><topic>Glacial till</topic><topic>Hill slope</topic><topic>Hills</topic><topic>Landscape ecology</topic><topic>landscapes</topic><topic>Mixed-wood boreal forest</topic><topic>Moisture gradient</topic><topic>Moss</topic><topic>Nutrient gradient</topic><topic>nutrients</topic><topic>Ordination</topic><topic>Principal components analysis</topic><topic>Sloping terrain</topic><topic>Soil water</topic><topic>topographic slope</topic><topic>Toposequence</topic><topic>Vegetation</topic><topic>Vegetation structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bridge, S.R.J</creatorcontrib><creatorcontrib>Johnson, E.A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of vegetation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bridge, S.R.J</au><au>Johnson, E.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geomorphic principles of terrain organization and vegetation gradients</atitle><jtitle>Journal of vegetation science</jtitle><date>2000-02</date><risdate>2000</risdate><volume>11</volume><issue>1</issue><spage>57</spage><epage>70</epage><pages>57-70</pages><issn>1100-9233</issn><eissn>1654-1103</eissn><abstract>Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.2307/3236776</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1100-9233 |
ispartof | Journal of vegetation science, 2000-02, Vol.11 (1), p.57-70 |
issn | 1100-9233 1654-1103 |
language | eng |
recordid | cdi_crossref_primary_10_2307_3236776 |
source | Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Allometric equation boreal forests botanical composition Dynamics equations Forest ecology Geomorphology Glacial landforms Glacial till Hill slope Hills Landscape ecology landscapes Mixed-wood boreal forest Moisture gradient Moss Nutrient gradient nutrients Ordination Principal components analysis Sloping terrain Soil water topographic slope Toposequence Vegetation Vegetation structure |
title | Geomorphic principles of terrain organization and vegetation gradients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geomorphic%20principles%20of%20terrain%20organization%20and%20vegetation%20gradients&rft.jtitle=Journal%20of%20vegetation%20science&rft.au=Bridge,%20S.R.J&rft.date=2000-02&rft.volume=11&rft.issue=1&rft.spage=57&rft.epage=70&rft.pages=57-70&rft.issn=1100-9233&rft.eissn=1654-1103&rft_id=info:doi/10.2307/3236776&rft_dat=%3Cjstor_cross%3E3236776%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3236776&rfr_iscdi=true |