Geomorphic principles of terrain organization and vegetation gradients

Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vegetation science 2000-02, Vol.11 (1), p.57-70
Hauptverfasser: Bridge, S.R.J, Johnson, E.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 57
container_title Journal of vegetation science
container_volume 11
creator Bridge, S.R.J
Johnson, E.A
description Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.
doi_str_mv 10.2307/3236776
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3236776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3236776</jstor_id><sourcerecordid>3236776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</originalsourceid><addsrcrecordid>eNp10FFLwzAQB_AgCs4pfgHBvvkg1UsuTdpHGW5Thj5s08eQtunM3JqRFHV-eisd88mnXLgfx_2PkHMKNwxB3iJDIaU4ID0qEh5TCnjY1hQgzhjiMTkJYQlAZSZojwxHxq2d37zZItp4Wxd2szIhclXUGO-1rSPnF7q237qxro50XUYfZmGa7rvwurSmbsIpOar0Kpiz3dsn8-H9bDCOJ8-jh8HdJC6QszQWArRAwbkwpSmFzNNCIiYVZhlLBIUE80wmOTWlllXKOOa8DcG0TLHMdZljn1x1cwvvQvCmUu3Sa-23ioL6ja928Vt53clPuzLb_5h6fJlSlrb6otPL0Di_13_D4q5tQ2O-9m3t35WQKBP1-jRSfJbOcDwBlbX-svOVdkovvA1qPmVAeXv3BAQA_gCNhHrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geomorphic principles of terrain organization and vegetation gradients</title><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bridge, S.R.J ; Johnson, E.A</creator><creatorcontrib>Bridge, S.R.J ; Johnson, E.A</creatorcontrib><description>Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.</description><identifier>ISSN: 1100-9233</identifier><identifier>EISSN: 1654-1103</identifier><identifier>DOI: 10.2307/3236776</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Allometric equation ; boreal forests ; botanical composition ; Dynamics ; equations ; Forest ecology ; Geomorphology ; Glacial landforms ; Glacial till ; Hill slope ; Hills ; Landscape ecology ; landscapes ; Mixed-wood boreal forest ; Moisture gradient ; Moss ; Nutrient gradient ; nutrients ; Ordination ; Principal components analysis ; Sloping terrain ; Soil water ; topographic slope ; Toposequence ; Vegetation ; Vegetation structure</subject><ispartof>Journal of vegetation science, 2000-02, Vol.11 (1), p.57-70</ispartof><rights>Copyright 2000 IAVS; Opulus Press Uppsala</rights><rights>2000 IAVS ‐ the International Association of Vegetation Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</citedby><cites>FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3236776$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3236776$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>Bridge, S.R.J</creatorcontrib><creatorcontrib>Johnson, E.A</creatorcontrib><title>Geomorphic principles of terrain organization and vegetation gradients</title><title>Journal of vegetation science</title><description>Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.</description><subject>Allometric equation</subject><subject>boreal forests</subject><subject>botanical composition</subject><subject>Dynamics</subject><subject>equations</subject><subject>Forest ecology</subject><subject>Geomorphology</subject><subject>Glacial landforms</subject><subject>Glacial till</subject><subject>Hill slope</subject><subject>Hills</subject><subject>Landscape ecology</subject><subject>landscapes</subject><subject>Mixed-wood boreal forest</subject><subject>Moisture gradient</subject><subject>Moss</subject><subject>Nutrient gradient</subject><subject>nutrients</subject><subject>Ordination</subject><subject>Principal components analysis</subject><subject>Sloping terrain</subject><subject>Soil water</subject><subject>topographic slope</subject><subject>Toposequence</subject><subject>Vegetation</subject><subject>Vegetation structure</subject><issn>1100-9233</issn><issn>1654-1103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQB_AgCs4pfgHBvvkg1UsuTdpHGW5Thj5s08eQtunM3JqRFHV-eisd88mnXLgfx_2PkHMKNwxB3iJDIaU4ID0qEh5TCnjY1hQgzhjiMTkJYQlAZSZojwxHxq2d37zZItp4Wxd2szIhclXUGO-1rSPnF7q237qxro50XUYfZmGa7rvwurSmbsIpOar0Kpiz3dsn8-H9bDCOJ8-jh8HdJC6QszQWArRAwbkwpSmFzNNCIiYVZhlLBIUE80wmOTWlllXKOOa8DcG0TLHMdZljn1x1cwvvQvCmUu3Sa-23ioL6ja928Vt53clPuzLb_5h6fJlSlrb6otPL0Di_13_D4q5tQ2O-9m3t35WQKBP1-jRSfJbOcDwBlbX-svOVdkovvA1qPmVAeXv3BAQA_gCNhHrI</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Bridge, S.R.J</creator><creator>Johnson, E.A</creator><general>Blackwell Publishing Ltd</general><general>Opulus Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200002</creationdate><title>Geomorphic principles of terrain organization and vegetation gradients</title><author>Bridge, S.R.J ; Johnson, E.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3428-660a636446eded67b8c7335f3992561053b975b1eda7f8243b41652a783dbadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Allometric equation</topic><topic>boreal forests</topic><topic>botanical composition</topic><topic>Dynamics</topic><topic>equations</topic><topic>Forest ecology</topic><topic>Geomorphology</topic><topic>Glacial landforms</topic><topic>Glacial till</topic><topic>Hill slope</topic><topic>Hills</topic><topic>Landscape ecology</topic><topic>landscapes</topic><topic>Mixed-wood boreal forest</topic><topic>Moisture gradient</topic><topic>Moss</topic><topic>Nutrient gradient</topic><topic>nutrients</topic><topic>Ordination</topic><topic>Principal components analysis</topic><topic>Sloping terrain</topic><topic>Soil water</topic><topic>topographic slope</topic><topic>Toposequence</topic><topic>Vegetation</topic><topic>Vegetation structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bridge, S.R.J</creatorcontrib><creatorcontrib>Johnson, E.A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of vegetation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bridge, S.R.J</au><au>Johnson, E.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geomorphic principles of terrain organization and vegetation gradients</atitle><jtitle>Journal of vegetation science</jtitle><date>2000-02</date><risdate>2000</risdate><volume>11</volume><issue>1</issue><spage>57</spage><epage>70</epage><pages>57-70</pages><issn>1100-9233</issn><eissn>1654-1103</eissn><abstract>Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.2307/3236776</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1100-9233
ispartof Journal of vegetation science, 2000-02, Vol.11 (1), p.57-70
issn 1100-9233
1654-1103
language eng
recordid cdi_crossref_primary_10_2307_3236776
source Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Allometric equation
boreal forests
botanical composition
Dynamics
equations
Forest ecology
Geomorphology
Glacial landforms
Glacial till
Hill slope
Hills
Landscape ecology
landscapes
Mixed-wood boreal forest
Moisture gradient
Moss
Nutrient gradient
nutrients
Ordination
Principal components analysis
Sloping terrain
Soil water
topographic slope
Toposequence
Vegetation
Vegetation structure
title Geomorphic principles of terrain organization and vegetation gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geomorphic%20principles%20of%20terrain%20organization%20and%20vegetation%20gradients&rft.jtitle=Journal%20of%20vegetation%20science&rft.au=Bridge,%20S.R.J&rft.date=2000-02&rft.volume=11&rft.issue=1&rft.spage=57&rft.epage=70&rft.pages=57-70&rft.issn=1100-9233&rft.eissn=1654-1103&rft_id=info:doi/10.2307/3236776&rft_dat=%3Cjstor_cross%3E3236776%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3236776&rfr_iscdi=true