Modeling the effect of erosion on crop production

This paper is concerned with a model for the effect of erosion on crop production. Crop yield in the year n is given by X(n) = YnLn, where is a sequence of strictly positive i.i.d. random variables such that E{Y 1}

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1987-12, Vol.24 (4), p.787-797
Hauptverfasser: Todorovic, P., Gani, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 797
container_issue 4
container_start_page 787
container_title Journal of applied probability
container_volume 24
creator Todorovic, P.
Gani, J.
description This paper is concerned with a model for the effect of erosion on crop production. Crop yield in the year n is given by X(n) = YnLn, where is a sequence of strictly positive i.i.d. random variables such that E{Y 1}
doi_str_mv 10.2307/3214205
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_3214205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_3214205</cupid><jstor_id>3214205</jstor_id><sourcerecordid>3214205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-46233b40d1ebdcc365eb8a6d45ddd1026f11d6081afc9e72cd63ab66ecb460363</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFfxL-QgiIfq5KOT7VEWV4UVL3ouaT7Wlm5Tku7Bf29lix4EYZiB4eF9eQi5ZHDLBag7wZnkUByRjElV5AiKH5MMgLO8nPYpOUupBWCyKFVG2Euwrmv6LR0_HHXeOzPS4KmLITWhp9OYGAY6xGD3Zpxe5-TE6y65i_kuyPv64W31lG9eH59X95vccKnGXCIXopZgmautMQILVy81WllYaxlw9IxZhCXT3pROcWNR6BrRmVoiCBQLcn3InfpTis5XQ2x2On5WDKpv02o2ncirAznoZHTno-5Nk35wheUSlfjF2jSG-E_azdyrd3Vs7NZVbdjHfnL9w34BwZFpgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling the effect of erosion on crop production</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Todorovic, P. ; Gani, J.</creator><creatorcontrib>Todorovic, P. ; Gani, J.</creatorcontrib><description>This paper is concerned with a model for the effect of erosion on crop production. Crop yield in the year n is given by X(n) = YnLn, where is a sequence of strictly positive i.i.d. random variables such that E{Y 1} &lt;∞, and is a Markov chain with stationary transition probabilities, independent of . When suitably normalized, leads to a martingale which converges to 0 almost everywhere (a.e.) as n → ∞. In addition, for large n, the distribution of Ln is approximately lognormal. The conditional expectations and probabilities of , given the past history of the process, are determined. Finally, the asymptotic behaviour of the total crop yield is discussed. It is established that under certain regularity conditions Sn converges a.e. to a finite-valued random variable S whose Laplace transform can be obtained as the solution of a Volterra-type linear integral equation.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.2307/3214205</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applications ; Crop production ; Differential equations ; Erosion ; Exact sciences and technology ; Food crops ; Laplace transformation ; Markov chains ; Martingales ; Mathematics ; Probability and statistics ; Random variables ; Research Papers ; Sciences and techniques of general use ; Soil erosion ; Statistics ; Transition probabilities</subject><ispartof>Journal of applied probability, 1987-12, Vol.24 (4), p.787-797</ispartof><rights>Copyright © Applied Probability Trust 1987</rights><rights>Copyright 1987 Applied Probability Trust</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-46233b40d1ebdcc365eb8a6d45ddd1026f11d6081afc9e72cd63ab66ecb460363</citedby><cites>FETCH-LOGICAL-c247t-46233b40d1ebdcc365eb8a6d45ddd1026f11d6081afc9e72cd63ab66ecb460363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3214205$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3214205$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7698673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Todorovic, P.</creatorcontrib><creatorcontrib>Gani, J.</creatorcontrib><title>Modeling the effect of erosion on crop production</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>This paper is concerned with a model for the effect of erosion on crop production. Crop yield in the year n is given by X(n) = YnLn, where is a sequence of strictly positive i.i.d. random variables such that E{Y 1} &lt;∞, and is a Markov chain with stationary transition probabilities, independent of . When suitably normalized, leads to a martingale which converges to 0 almost everywhere (a.e.) as n → ∞. In addition, for large n, the distribution of Ln is approximately lognormal. The conditional expectations and probabilities of , given the past history of the process, are determined. Finally, the asymptotic behaviour of the total crop yield is discussed. It is established that under certain regularity conditions Sn converges a.e. to a finite-valued random variable S whose Laplace transform can be obtained as the solution of a Volterra-type linear integral equation.</description><subject>Applications</subject><subject>Crop production</subject><subject>Differential equations</subject><subject>Erosion</subject><subject>Exact sciences and technology</subject><subject>Food crops</subject><subject>Laplace transformation</subject><subject>Markov chains</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Research Papers</subject><subject>Sciences and techniques of general use</subject><subject>Soil erosion</subject><subject>Statistics</subject><subject>Transition probabilities</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFfxL-QgiIfq5KOT7VEWV4UVL3ouaT7Wlm5Tku7Bf29lix4EYZiB4eF9eQi5ZHDLBag7wZnkUByRjElV5AiKH5MMgLO8nPYpOUupBWCyKFVG2Euwrmv6LR0_HHXeOzPS4KmLITWhp9OYGAY6xGD3Zpxe5-TE6y65i_kuyPv64W31lG9eH59X95vccKnGXCIXopZgmautMQILVy81WllYaxlw9IxZhCXT3pROcWNR6BrRmVoiCBQLcn3InfpTis5XQ2x2On5WDKpv02o2ncirAznoZHTno-5Nk35wheUSlfjF2jSG-E_azdyrd3Vs7NZVbdjHfnL9w34BwZFpgw</recordid><startdate>19871201</startdate><enddate>19871201</enddate><creator>Todorovic, P.</creator><creator>Gani, J.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19871201</creationdate><title>Modeling the effect of erosion on crop production</title><author>Todorovic, P. ; Gani, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-46233b40d1ebdcc365eb8a6d45ddd1026f11d6081afc9e72cd63ab66ecb460363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applications</topic><topic>Crop production</topic><topic>Differential equations</topic><topic>Erosion</topic><topic>Exact sciences and technology</topic><topic>Food crops</topic><topic>Laplace transformation</topic><topic>Markov chains</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Research Papers</topic><topic>Sciences and techniques of general use</topic><topic>Soil erosion</topic><topic>Statistics</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Todorovic, P.</creatorcontrib><creatorcontrib>Gani, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Todorovic, P.</au><au>Gani, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the effect of erosion on crop production</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1987-12-01</date><risdate>1987</risdate><volume>24</volume><issue>4</issue><spage>787</spage><epage>797</epage><pages>787-797</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>This paper is concerned with a model for the effect of erosion on crop production. Crop yield in the year n is given by X(n) = YnLn, where is a sequence of strictly positive i.i.d. random variables such that E{Y 1} &lt;∞, and is a Markov chain with stationary transition probabilities, independent of . When suitably normalized, leads to a martingale which converges to 0 almost everywhere (a.e.) as n → ∞. In addition, for large n, the distribution of Ln is approximately lognormal. The conditional expectations and probabilities of , given the past history of the process, are determined. Finally, the asymptotic behaviour of the total crop yield is discussed. It is established that under certain regularity conditions Sn converges a.e. to a finite-valued random variable S whose Laplace transform can be obtained as the solution of a Volterra-type linear integral equation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/3214205</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1987-12, Vol.24 (4), p.787-797
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_2307_3214205
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Applications
Crop production
Differential equations
Erosion
Exact sciences and technology
Food crops
Laplace transformation
Markov chains
Martingales
Mathematics
Probability and statistics
Random variables
Research Papers
Sciences and techniques of general use
Soil erosion
Statistics
Transition probabilities
title Modeling the effect of erosion on crop production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20effect%20of%20erosion%20on%20crop%20production&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Todorovic,%20P.&rft.date=1987-12-01&rft.volume=24&rft.issue=4&rft.spage=787&rft.epage=797&rft.pages=787-797&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.2307/3214205&rft_dat=%3Cjstor_cross%3E3214205%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_2307_3214205&rft_jstor_id=3214205&rfr_iscdi=true