Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling

An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1992-03, Vol.48 (1), p.189-199
Hauptverfasser: Li, H. G., Schreuder, H. T., Van Hooser, D. D., Brink, G. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 189
container_title Biometrics
container_volume 48
creator Li, H. G.
Schreuder, H. T.
Van Hooser, D. D.
Brink, G. E.
description An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator.
doi_str_mv 10.2307/2532749
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2532749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2532749</jstor_id><sourcerecordid>2532749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-cef6c403ac77cefffc41baeadacc0a04997b56fcd5f9f248025c8c547142eadd3</originalsourceid><addsrcrecordid>eNp10EtLAzEQAOAgCtYq_oUcBE-rk2zS7R611gdUFKogXpbpbGK3bDclSRH_vSktxYuneX0MzDB2LuBK5lBcS53LQpUHrCe0EhkoCYesBwCDLFfi45idhLBIZalB9tjnOMRmibHpvvg0eozInw12gTcdv3PrWWv4FJerdjP_buKcj5z3hmLjkrnFYGruOj415Lo6e52nxt6fsiOLbTBnu9hn7_fjt9FjNnl5eBrdTDLKBcSMjB2QghypKFJuLSkxQ4M1EgGCKstipgeWam1LK9UQpKYhaVUIJZOq8z673O4l70LwxlYrn07yP5WAavOSaveSJC-2coWBsLUeO2rCnmtdaKX_sEWIzv-77RdAtmyN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Li, H. G. ; Schreuder, H. T. ; Van Hooser, D. D. ; Brink, G. E.</creator><creatorcontrib>Li, H. G. ; Schreuder, H. T. ; Van Hooser, D. D. ; Brink, G. E.</creatorcontrib><description>An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2532749</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, MA: Biometric Society</publisher><subject>Biometrics ; Confidence interval ; Estimation bias ; Estimators ; Estimators for the mean ; Exact sciences and technology ; Mathematics ; Maximum likelihood estimation ; Population estimates ; Population mean ; Probability and statistics ; Sample size ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistical variance ; Statistics</subject><ispartof>Biometrics, 1992-03, Vol.48 (1), p.189-199</ispartof><rights>Copyright 1992 The Biometric Society</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-cef6c403ac77cefffc41baeadacc0a04997b56fcd5f9f248025c8c547142eadd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2532749$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2532749$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5575459$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, H. G.</creatorcontrib><creatorcontrib>Schreuder, H. T.</creatorcontrib><creatorcontrib>Van Hooser, D. D.</creatorcontrib><creatorcontrib>Brink, G. E.</creatorcontrib><title>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</title><title>Biometrics</title><description>An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator.</description><subject>Biometrics</subject><subject>Confidence interval</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Population estimates</subject><subject>Population mean</subject><subject>Probability and statistics</subject><subject>Sample size</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQAOAgCtYq_oUcBE-rk2zS7R611gdUFKogXpbpbGK3bDclSRH_vSktxYuneX0MzDB2LuBK5lBcS53LQpUHrCe0EhkoCYesBwCDLFfi45idhLBIZalB9tjnOMRmibHpvvg0eozInw12gTcdv3PrWWv4FJerdjP_buKcj5z3hmLjkrnFYGruOj415Lo6e52nxt6fsiOLbTBnu9hn7_fjt9FjNnl5eBrdTDLKBcSMjB2QghypKFJuLSkxQ4M1EgGCKstipgeWam1LK9UQpKYhaVUIJZOq8z673O4l70LwxlYrn07yP5WAavOSaveSJC-2coWBsLUeO2rCnmtdaKX_sEWIzv-77RdAtmyN</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Li, H. G.</creator><creator>Schreuder, H. T.</creator><creator>Van Hooser, D. D.</creator><creator>Brink, G. E.</creator><general>Biometric Society</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920301</creationdate><title>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</title><author>Li, H. G. ; Schreuder, H. T. ; Van Hooser, D. D. ; Brink, G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-cef6c403ac77cefffc41baeadacc0a04997b56fcd5f9f248025c8c547142eadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Biometrics</topic><topic>Confidence interval</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Population estimates</topic><topic>Population mean</topic><topic>Probability and statistics</topic><topic>Sample size</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, H. G.</creatorcontrib><creatorcontrib>Schreuder, H. T.</creatorcontrib><creatorcontrib>Van Hooser, D. D.</creatorcontrib><creatorcontrib>Brink, G. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, H. G.</au><au>Schreuder, H. T.</au><au>Van Hooser, D. D.</au><au>Brink, G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</atitle><jtitle>Biometrics</jtitle><date>1992-03-01</date><risdate>1992</risdate><volume>48</volume><issue>1</issue><spage>189</spage><epage>199</epage><pages>189-199</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator.</abstract><cop>Malden, MA</cop><pub>Biometric Society</pub><doi>10.2307/2532749</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1992-03, Vol.48 (1), p.189-199
issn 0006-341X
1541-0420
language eng
recordid cdi_crossref_primary_10_2307_2532749
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Biometrics
Confidence interval
Estimation bias
Estimators
Estimators for the mean
Exact sciences and technology
Mathematics
Maximum likelihood estimation
Population estimates
Population mean
Probability and statistics
Sample size
Sampling theory, sample surveys
Sciences and techniques of general use
Statistical variance
Statistics
title Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Strata%20Means%20in%20Double%20Sampling%20with%20Corrections%20Based%20on%20Second-Phase%20Sampling&rft.jtitle=Biometrics&rft.au=Li,%20H.%20G.&rft.date=1992-03-01&rft.volume=48&rft.issue=1&rft.spage=189&rft.epage=199&rft.pages=189-199&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.2307/2532749&rft_dat=%3Cjstor_cross%3E2532749%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2532749&rfr_iscdi=true