Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling
An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstra...
Gespeichert in:
Veröffentlicht in: | Biometrics 1992-03, Vol.48 (1), p.189-199 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 1 |
container_start_page | 189 |
container_title | Biometrics |
container_volume | 48 |
creator | Li, H. G. Schreuder, H. T. Van Hooser, D. D. Brink, G. E. |
description | An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator. |
doi_str_mv | 10.2307/2532749 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2532749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2532749</jstor_id><sourcerecordid>2532749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-cef6c403ac77cefffc41baeadacc0a04997b56fcd5f9f248025c8c547142eadd3</originalsourceid><addsrcrecordid>eNp10EtLAzEQAOAgCtYq_oUcBE-rk2zS7R611gdUFKogXpbpbGK3bDclSRH_vSktxYuneX0MzDB2LuBK5lBcS53LQpUHrCe0EhkoCYesBwCDLFfi45idhLBIZalB9tjnOMRmibHpvvg0eozInw12gTcdv3PrWWv4FJerdjP_buKcj5z3hmLjkrnFYGruOj415Lo6e52nxt6fsiOLbTBnu9hn7_fjt9FjNnl5eBrdTDLKBcSMjB2QghypKFJuLSkxQ4M1EgGCKstipgeWam1LK9UQpKYhaVUIJZOq8z673O4l70LwxlYrn07yP5WAavOSaveSJC-2coWBsLUeO2rCnmtdaKX_sEWIzv-77RdAtmyN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Li, H. G. ; Schreuder, H. T. ; Van Hooser, D. D. ; Brink, G. E.</creator><creatorcontrib>Li, H. G. ; Schreuder, H. T. ; Van Hooser, D. D. ; Brink, G. E.</creatorcontrib><description>An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2532749</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, MA: Biometric Society</publisher><subject>Biometrics ; Confidence interval ; Estimation bias ; Estimators ; Estimators for the mean ; Exact sciences and technology ; Mathematics ; Maximum likelihood estimation ; Population estimates ; Population mean ; Probability and statistics ; Sample size ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistical variance ; Statistics</subject><ispartof>Biometrics, 1992-03, Vol.48 (1), p.189-199</ispartof><rights>Copyright 1992 The Biometric Society</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-cef6c403ac77cefffc41baeadacc0a04997b56fcd5f9f248025c8c547142eadd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2532749$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2532749$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5575459$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, H. G.</creatorcontrib><creatorcontrib>Schreuder, H. T.</creatorcontrib><creatorcontrib>Van Hooser, D. D.</creatorcontrib><creatorcontrib>Brink, G. E.</creatorcontrib><title>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</title><title>Biometrics</title><description>An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator.</description><subject>Biometrics</subject><subject>Confidence interval</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Population estimates</subject><subject>Population mean</subject><subject>Probability and statistics</subject><subject>Sample size</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQAOAgCtYq_oUcBE-rk2zS7R611gdUFKogXpbpbGK3bDclSRH_vSktxYuneX0MzDB2LuBK5lBcS53LQpUHrCe0EhkoCYesBwCDLFfi45idhLBIZalB9tjnOMRmibHpvvg0eozInw12gTcdv3PrWWv4FJerdjP_buKcj5z3hmLjkrnFYGruOj415Lo6e52nxt6fsiOLbTBnu9hn7_fjt9FjNnl5eBrdTDLKBcSMjB2QghypKFJuLSkxQ4M1EgGCKstipgeWam1LK9UQpKYhaVUIJZOq8z673O4l70LwxlYrn07yP5WAavOSaveSJC-2coWBsLUeO2rCnmtdaKX_sEWIzv-77RdAtmyN</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Li, H. G.</creator><creator>Schreuder, H. T.</creator><creator>Van Hooser, D. D.</creator><creator>Brink, G. E.</creator><general>Biometric Society</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920301</creationdate><title>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</title><author>Li, H. G. ; Schreuder, H. T. ; Van Hooser, D. D. ; Brink, G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-cef6c403ac77cefffc41baeadacc0a04997b56fcd5f9f248025c8c547142eadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Biometrics</topic><topic>Confidence interval</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Population estimates</topic><topic>Population mean</topic><topic>Probability and statistics</topic><topic>Sample size</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, H. G.</creatorcontrib><creatorcontrib>Schreuder, H. T.</creatorcontrib><creatorcontrib>Van Hooser, D. D.</creatorcontrib><creatorcontrib>Brink, G. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, H. G.</au><au>Schreuder, H. T.</au><au>Van Hooser, D. D.</au><au>Brink, G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling</atitle><jtitle>Biometrics</jtitle><date>1992-03-01</date><risdate>1992</risdate><volume>48</volume><issue>1</issue><spage>189</spage><epage>199</epage><pages>189-199</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>An estimator for strata means is presented for double sampling for stratification where the first-phase strata estimates are corrected by second-phase subsampling. A variance estimator is derived for the estimated strata weights and for the adjusted strata means. These are compared with two bootstrap variance estimators in a simulation study. The stratum mean estimator has negligible bias, and either bootstrap variance estimator is clearly better than the classical estimator in estimating the true variance. The variability of the strata weights is most reliably estimated by the classical variance estimator.</abstract><cop>Malden, MA</cop><pub>Biometric Society</pub><doi>10.2307/2532749</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 1992-03, Vol.48 (1), p.189-199 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_crossref_primary_10_2307_2532749 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Biometrics Confidence interval Estimation bias Estimators Estimators for the mean Exact sciences and technology Mathematics Maximum likelihood estimation Population estimates Population mean Probability and statistics Sample size Sampling theory, sample surveys Sciences and techniques of general use Statistical variance Statistics |
title | Estimating Strata Means in Double Sampling with Corrections Based on Second-Phase Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Strata%20Means%20in%20Double%20Sampling%20with%20Corrections%20Based%20on%20Second-Phase%20Sampling&rft.jtitle=Biometrics&rft.au=Li,%20H.%20G.&rft.date=1992-03-01&rft.volume=48&rft.issue=1&rft.spage=189&rft.epage=199&rft.pages=189-199&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.2307/2532749&rft_dat=%3Cjstor_cross%3E2532749%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2532749&rfr_iscdi=true |