Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction
Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful...
Gespeichert in:
Veröffentlicht in: | Biometrics 1993-12, Vol.49 (4), p.1262-1267 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1267 |
---|---|
container_issue | 4 |
container_start_page | 1262 |
container_title | Biometrics |
container_volume | 49 |
creator | Schaalje, G. Bruce Butts, Richard A. |
description | Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model. |
doi_str_mv | 10.2307/2532270 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2532270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2532270</jstor_id><sourcerecordid>2532270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-b1975c75f7eb809af4b365b31cdaa1dd85e43d8312fb148d0633e866318284b3</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoWKf4FXIQPFXzp2nTo4ypg4nidvBW0uZNzdgSeRMPfnsr29XTjwcefoeHkGvO7oRkzb1QUoiGnZCCq4qXrBLslBSMsbqUFf84JxcpbSdsFRMFMeu4B7pwDoacaHR0OYaIPox0HhFhZzJY-gImfSPsIWS6QIyYqA90ndH48TPTlQ9A32FESMnHQE2w9A3B-iFPeEnOnNkluDrujGweF5v5c7l6fVrOH1blIJTIZc_bRg2Ncg30mrXGVb2sVS_5YI3h1moFlbRacuF6XmnLailB17XkWujJnZHbw-2AMSUE132h3xv86Tjr_sJ0xzCTeXMwtylH_Ff7BYyLYKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Schaalje, G. Bruce ; Butts, Richard A.</creator><creatorcontrib>Schaalje, G. Bruce ; Butts, Richard A.</creatorcontrib><description>Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2532270</identifier><language>eng</language><publisher>Biometric Society</publisher><subject>Error rates ; Estimators ; Expected values ; Least squares ; Modeling ; Parametric models ; Regression coefficients ; Sampling errors ; Standard error ; Statistical discrepancies ; The Consultant's Forum</subject><ispartof>Biometrics, 1993-12, Vol.49 (4), p.1262-1267</ispartof><rights>Copyright 1993 The Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-b1975c75f7eb809af4b365b31cdaa1dd85e43d8312fb148d0633e866318284b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2532270$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2532270$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Schaalje, G. Bruce</creatorcontrib><creatorcontrib>Butts, Richard A.</creatorcontrib><title>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</title><title>Biometrics</title><description>Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model.</description><subject>Error rates</subject><subject>Estimators</subject><subject>Expected values</subject><subject>Least squares</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Regression coefficients</subject><subject>Sampling errors</subject><subject>Standard error</subject><subject>Statistical discrepancies</subject><subject>The Consultant's Forum</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYh4MoWKf4FXIQPFXzp2nTo4ypg4nidvBW0uZNzdgSeRMPfnsr29XTjwcefoeHkGvO7oRkzb1QUoiGnZCCq4qXrBLslBSMsbqUFf84JxcpbSdsFRMFMeu4B7pwDoacaHR0OYaIPox0HhFhZzJY-gImfSPsIWS6QIyYqA90ndH48TPTlQ9A32FESMnHQE2w9A3B-iFPeEnOnNkluDrujGweF5v5c7l6fVrOH1blIJTIZc_bRg2Ncg30mrXGVb2sVS_5YI3h1moFlbRacuF6XmnLailB17XkWujJnZHbw-2AMSUE132h3xv86Tjr_sJ0xzCTeXMwtylH_Ff7BYyLYKk</recordid><startdate>19931201</startdate><enddate>19931201</enddate><creator>Schaalje, G. Bruce</creator><creator>Butts, Richard A.</creator><general>Biometric Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19931201</creationdate><title>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</title><author>Schaalje, G. Bruce ; Butts, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-b1975c75f7eb809af4b365b31cdaa1dd85e43d8312fb148d0633e866318284b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Error rates</topic><topic>Estimators</topic><topic>Expected values</topic><topic>Least squares</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Regression coefficients</topic><topic>Sampling errors</topic><topic>Standard error</topic><topic>Statistical discrepancies</topic><topic>The Consultant's Forum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaalje, G. Bruce</creatorcontrib><creatorcontrib>Butts, Richard A.</creatorcontrib><collection>CrossRef</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaalje, G. Bruce</au><au>Butts, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</atitle><jtitle>Biometrics</jtitle><date>1993-12-01</date><risdate>1993</risdate><volume>49</volume><issue>4</issue><spage>1262</spage><epage>1267</epage><pages>1262-1267</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model.</abstract><pub>Biometric Society</pub><doi>10.2307/2532270</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 1993-12, Vol.49 (4), p.1262-1267 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_crossref_primary_10_2307_2532270 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Error rates Estimators Expected values Least squares Modeling Parametric models Regression coefficients Sampling errors Standard error Statistical discrepancies The Consultant's Forum |
title | Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Effects%20of%20Ignoring%20Correlated%20Measurement%20Errors%20in%20Straight%20Line%20Regression%20and%20Prediction&rft.jtitle=Biometrics&rft.au=Schaalje,%20G.%20Bruce&rft.date=1993-12-01&rft.volume=49&rft.issue=4&rft.spage=1262&rft.epage=1267&rft.pages=1262-1267&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.2307/2532270&rft_dat=%3Cjstor_cross%3E2532270%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2532270&rfr_iscdi=true |