Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction

Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1993-12, Vol.49 (4), p.1262-1267
Hauptverfasser: Schaalje, G. Bruce, Butts, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1267
container_issue 4
container_start_page 1262
container_title Biometrics
container_volume 49
creator Schaalje, G. Bruce
Butts, Richard A.
description Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model.
doi_str_mv 10.2307/2532270
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2532270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2532270</jstor_id><sourcerecordid>2532270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-b1975c75f7eb809af4b365b31cdaa1dd85e43d8312fb148d0633e866318284b3</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoWKf4FXIQPFXzp2nTo4ypg4nidvBW0uZNzdgSeRMPfnsr29XTjwcefoeHkGvO7oRkzb1QUoiGnZCCq4qXrBLslBSMsbqUFf84JxcpbSdsFRMFMeu4B7pwDoacaHR0OYaIPox0HhFhZzJY-gImfSPsIWS6QIyYqA90ndH48TPTlQ9A32FESMnHQE2w9A3B-iFPeEnOnNkluDrujGweF5v5c7l6fVrOH1blIJTIZc_bRg2Ncg30mrXGVb2sVS_5YI3h1moFlbRacuF6XmnLailB17XkWujJnZHbw-2AMSUE132h3xv86Tjr_sJ0xzCTeXMwtylH_Ff7BYyLYKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Schaalje, G. Bruce ; Butts, Richard A.</creator><creatorcontrib>Schaalje, G. Bruce ; Butts, Richard A.</creatorcontrib><description>Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2532270</identifier><language>eng</language><publisher>Biometric Society</publisher><subject>Error rates ; Estimators ; Expected values ; Least squares ; Modeling ; Parametric models ; Regression coefficients ; Sampling errors ; Standard error ; Statistical discrepancies ; The Consultant's Forum</subject><ispartof>Biometrics, 1993-12, Vol.49 (4), p.1262-1267</ispartof><rights>Copyright 1993 The Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-b1975c75f7eb809af4b365b31cdaa1dd85e43d8312fb148d0633e866318284b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2532270$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2532270$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Schaalje, G. Bruce</creatorcontrib><creatorcontrib>Butts, Richard A.</creatorcontrib><title>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</title><title>Biometrics</title><description>Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model.</description><subject>Error rates</subject><subject>Estimators</subject><subject>Expected values</subject><subject>Least squares</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Regression coefficients</subject><subject>Sampling errors</subject><subject>Standard error</subject><subject>Statistical discrepancies</subject><subject>The Consultant's Forum</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYh4MoWKf4FXIQPFXzp2nTo4ypg4nidvBW0uZNzdgSeRMPfnsr29XTjwcefoeHkGvO7oRkzb1QUoiGnZCCq4qXrBLslBSMsbqUFf84JxcpbSdsFRMFMeu4B7pwDoacaHR0OYaIPox0HhFhZzJY-gImfSPsIWS6QIyYqA90ndH48TPTlQ9A32FESMnHQE2w9A3B-iFPeEnOnNkluDrujGweF5v5c7l6fVrOH1blIJTIZc_bRg2Ncg30mrXGVb2sVS_5YI3h1moFlbRacuF6XmnLailB17XkWujJnZHbw-2AMSUE132h3xv86Tjr_sJ0xzCTeXMwtylH_Ff7BYyLYKk</recordid><startdate>19931201</startdate><enddate>19931201</enddate><creator>Schaalje, G. Bruce</creator><creator>Butts, Richard A.</creator><general>Biometric Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19931201</creationdate><title>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</title><author>Schaalje, G. Bruce ; Butts, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-b1975c75f7eb809af4b365b31cdaa1dd85e43d8312fb148d0633e866318284b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Error rates</topic><topic>Estimators</topic><topic>Expected values</topic><topic>Least squares</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Regression coefficients</topic><topic>Sampling errors</topic><topic>Standard error</topic><topic>Statistical discrepancies</topic><topic>The Consultant's Forum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaalje, G. Bruce</creatorcontrib><creatorcontrib>Butts, Richard A.</creatorcontrib><collection>CrossRef</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaalje, G. Bruce</au><au>Butts, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction</atitle><jtitle>Biometrics</jtitle><date>1993-12-01</date><risdate>1993</risdate><volume>49</volume><issue>4</issue><spage>1262</spage><epage>1267</epage><pages>1262-1267</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Instructive expressions are developed for expected values of the least squares regression coefficient, sample residual mean squared error, and squared sample correlation coefficient in terms of a general measurement error model allowing for correlated measurement errors. These expressions are useful in assessing the importance of measurement error in given applications, and can be inverted to give simple estimators of measurement error model parameters based on the usual least squares estimates. They show that, in certain circumstances, the correlation of variables contaminated with measurement errors can be greater than that of the uncontaminated variables. These simple expressions should be useful in promoting the use of measurement error models in applications. An example demonstrates that even in some cases where the least squares regression coefficient is affected little by measurement error, valid estimation of the standard error of prediction may require the use of a measurement error model.</abstract><pub>Biometric Society</pub><doi>10.2307/2532270</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1993-12, Vol.49 (4), p.1262-1267
issn 0006-341X
1541-0420
language eng
recordid cdi_crossref_primary_10_2307_2532270
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Error rates
Estimators
Expected values
Least squares
Modeling
Parametric models
Regression coefficients
Sampling errors
Standard error
Statistical discrepancies
The Consultant's Forum
title Some Effects of Ignoring Correlated Measurement Errors in Straight Line Regression and Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Effects%20of%20Ignoring%20Correlated%20Measurement%20Errors%20in%20Straight%20Line%20Regression%20and%20Prediction&rft.jtitle=Biometrics&rft.au=Schaalje,%20G.%20Bruce&rft.date=1993-12-01&rft.volume=49&rft.issue=4&rft.spage=1262&rft.epage=1267&rft.pages=1262-1267&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.2307/2532270&rft_dat=%3Cjstor_cross%3E2532270%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2532270&rfr_iscdi=true