A Bayesian Approach to the Multiplicity Problem for Significance Testing with Binomial Data

Statistical analyses of simple tumor rates from an animal experiment with one control and one treated group typically consist of hypothesis testing of many 2 x 2 tables, one for each tumor type or site. The multiplicity of significance tests may cause excessive overall false-positive rates. This pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1987-06, Vol.43 (2), p.301-311
Hauptverfasser: Cliff Y. K. Meng, Dempster, Arthur P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 2
container_start_page 301
container_title Biometrics
container_volume 43
creator Cliff Y. K. Meng
Dempster, Arthur P.
description Statistical analyses of simple tumor rates from an animal experiment with one control and one treated group typically consist of hypothesis testing of many 2 x 2 tables, one for each tumor type or site. The multiplicity of significance tests may cause excessive overall false-positive rates. This paper presents a Bayesian approach to the problem of multiple significance testing. We develop a normal logistic model that accommodates the incidences of all tumor types or sites observed in the current experiment simultaneously as well as their historical control incidences. Exchangeable normal priors are assumed for certain linear terms in the model. Posterior means, standard deviations, and Bayesian P-values are computed for an average treatment effect as well as for the effects on individual tumor types or sites. Model assumptions are checked using probability plots and the sensitivity of the parameter estimates to alternative priors is studied. The method is illustrated using tumor data from a chronic animal experiment.
doi_str_mv 10.2307/2531814
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_2531814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2531814</jstor_id><sourcerecordid>2531814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2a81aa498d770bba769fe03df86f40d518dc7f0e28c5805e170e4e60ac0227d03</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoc07xFwi5ELyqnnw13eU2P2Gi4ATBi5KmyZbRtSXJkP17Kyt65dXh8D68h_MgdE7gmjKQN1QwkhF-gIZEcJIAp3CIhgCQJoyTj2N0EsK6W8cC6AANWAqSAh2izwmeqp0JTtV40ra-UXqFY4PjyuDnbRVdWznt4g6_-qaozAbbxuM3t6yddVrV2uCFCdHVS_zl4gpPXd1snKrwrYrqFB1ZVQVz1s8Rer-_W8wek_nLw9NsMk80YzwmVGVEKT7OSimhKJRMx9YAK22WWg6lIFmppQVDMy0yEIZIMNykoDRQKktgI3S179W-CcEbm7febZTf5QTyHzt5b6cjL_Zkuy02pvzleh1dftnnKmhVWd996MIvJoUAkOIPW4fY-H-vfQPtW3Yr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Bayesian Approach to the Multiplicity Problem for Significance Testing with Binomial Data</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Cliff Y. K. Meng ; Dempster, Arthur P.</creator><creatorcontrib>Cliff Y. K. Meng ; Dempster, Arthur P.</creatorcontrib><description>Statistical analyses of simple tumor rates from an animal experiment with one control and one treated group typically consist of hypothesis testing of many 2 x 2 tables, one for each tumor type or site. The multiplicity of significance tests may cause excessive overall false-positive rates. This paper presents a Bayesian approach to the problem of multiple significance testing. We develop a normal logistic model that accommodates the incidences of all tumor types or sites observed in the current experiment simultaneously as well as their historical control incidences. Exchangeable normal priors are assumed for certain linear terms in the model. Posterior means, standard deviations, and Bayesian P-values are computed for an average treatment effect as well as for the effects on individual tumor types or sites. Model assumptions are checked using probability plots and the sensitivity of the parameter estimates to alternative priors is studied. The method is illustrated using tumor data from a chronic animal experiment.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2531814</identifier><identifier>PMID: 3607202</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, MA: Biometric Society</publisher><subject>Analysis of Variance ; Animals ; Binomials ; Biological and medical sciences ; Biometrics ; Biometry ; Carcinogenicity ; Carcinogens ; Control groups ; Diseases of the eye ; Drug Evaluation, Preclinical - methods ; Maximum likelihood estimation ; Maximum likelihood estimators ; Medical sciences ; Neoplasms, Experimental - pathology ; P values ; Probability ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Statistical discrepancies ; Toxicology ; Tumors</subject><ispartof>Biometrics, 1987-06, Vol.43 (2), p.301-311</ispartof><rights>Copyright 1987 The Biometric Society</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2a81aa498d770bba769fe03df86f40d518dc7f0e28c5805e170e4e60ac0227d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2531814$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2531814$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7550075$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3607202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cliff Y. K. Meng</creatorcontrib><creatorcontrib>Dempster, Arthur P.</creatorcontrib><title>A Bayesian Approach to the Multiplicity Problem for Significance Testing with Binomial Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Statistical analyses of simple tumor rates from an animal experiment with one control and one treated group typically consist of hypothesis testing of many 2 x 2 tables, one for each tumor type or site. The multiplicity of significance tests may cause excessive overall false-positive rates. This paper presents a Bayesian approach to the problem of multiple significance testing. We develop a normal logistic model that accommodates the incidences of all tumor types or sites observed in the current experiment simultaneously as well as their historical control incidences. Exchangeable normal priors are assumed for certain linear terms in the model. Posterior means, standard deviations, and Bayesian P-values are computed for an average treatment effect as well as for the effects on individual tumor types or sites. Model assumptions are checked using probability plots and the sensitivity of the parameter estimates to alternative priors is studied. The method is illustrated using tumor data from a chronic animal experiment.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Binomials</subject><subject>Biological and medical sciences</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Carcinogenicity</subject><subject>Carcinogens</subject><subject>Control groups</subject><subject>Diseases of the eye</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Medical sciences</subject><subject>Neoplasms, Experimental - pathology</subject><subject>P values</subject><subject>Probability</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Statistical discrepancies</subject><subject>Toxicology</subject><subject>Tumors</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUhoMoc07xFwi5ELyqnnw13eU2P2Gi4ATBi5KmyZbRtSXJkP17Kyt65dXh8D68h_MgdE7gmjKQN1QwkhF-gIZEcJIAp3CIhgCQJoyTj2N0EsK6W8cC6AANWAqSAh2izwmeqp0JTtV40ra-UXqFY4PjyuDnbRVdWznt4g6_-qaozAbbxuM3t6yddVrV2uCFCdHVS_zl4gpPXd1snKrwrYrqFB1ZVQVz1s8Rer-_W8wek_nLw9NsMk80YzwmVGVEKT7OSimhKJRMx9YAK22WWg6lIFmppQVDMy0yEIZIMNykoDRQKktgI3S179W-CcEbm7febZTf5QTyHzt5b6cjL_Zkuy02pvzleh1dftnnKmhVWd996MIvJoUAkOIPW4fY-H-vfQPtW3Yr</recordid><startdate>19870601</startdate><enddate>19870601</enddate><creator>Cliff Y. K. Meng</creator><creator>Dempster, Arthur P.</creator><general>Biometric Society</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870601</creationdate><title>A Bayesian Approach to the Multiplicity Problem for Significance Testing with Binomial Data</title><author>Cliff Y. K. Meng ; Dempster, Arthur P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2a81aa498d770bba769fe03df86f40d518dc7f0e28c5805e170e4e60ac0227d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Binomials</topic><topic>Biological and medical sciences</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Carcinogenicity</topic><topic>Carcinogens</topic><topic>Control groups</topic><topic>Diseases of the eye</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Medical sciences</topic><topic>Neoplasms, Experimental - pathology</topic><topic>P values</topic><topic>Probability</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Statistical discrepancies</topic><topic>Toxicology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cliff Y. K. Meng</creatorcontrib><creatorcontrib>Dempster, Arthur P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cliff Y. K. Meng</au><au>Dempster, Arthur P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Approach to the Multiplicity Problem for Significance Testing with Binomial Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1987-06-01</date><risdate>1987</risdate><volume>43</volume><issue>2</issue><spage>301</spage><epage>311</epage><pages>301-311</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Statistical analyses of simple tumor rates from an animal experiment with one control and one treated group typically consist of hypothesis testing of many 2 x 2 tables, one for each tumor type or site. The multiplicity of significance tests may cause excessive overall false-positive rates. This paper presents a Bayesian approach to the problem of multiple significance testing. We develop a normal logistic model that accommodates the incidences of all tumor types or sites observed in the current experiment simultaneously as well as their historical control incidences. Exchangeable normal priors are assumed for certain linear terms in the model. Posterior means, standard deviations, and Bayesian P-values are computed for an average treatment effect as well as for the effects on individual tumor types or sites. Model assumptions are checked using probability plots and the sensitivity of the parameter estimates to alternative priors is studied. The method is illustrated using tumor data from a chronic animal experiment.</abstract><cop>Malden, MA</cop><pub>Biometric Society</pub><pmid>3607202</pmid><doi>10.2307/2531814</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1987-06, Vol.43 (2), p.301-311
issn 0006-341X
1541-0420
language eng
recordid cdi_crossref_primary_10_2307_2531814
source MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Analysis of Variance
Animals
Binomials
Biological and medical sciences
Biometrics
Biometry
Carcinogenicity
Carcinogens
Control groups
Diseases of the eye
Drug Evaluation, Preclinical - methods
Maximum likelihood estimation
Maximum likelihood estimators
Medical sciences
Neoplasms, Experimental - pathology
P values
Probability
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Statistical discrepancies
Toxicology
Tumors
title A Bayesian Approach to the Multiplicity Problem for Significance Testing with Binomial Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Approach%20to%20the%20Multiplicity%20Problem%20for%20Significance%20Testing%20with%20Binomial%20Data&rft.jtitle=Biometrics&rft.au=Cliff%20Y.%20K.%20Meng&rft.date=1987-06-01&rft.volume=43&rft.issue=2&rft.spage=301&rft.epage=311&rft.pages=301-311&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.2307/2531814&rft_dat=%3Cjstor_cross%3E2531814%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/3607202&rft_jstor_id=2531814&rfr_iscdi=true