The Chromatic Convergence Theorem and a Tower in Algebraic K-Theory
In this note we show how the chromatic convergence theorem of Hopkins and Ravenel implies that a tower of relative algebraic K-theories constructed by Waldhausen converges to the p-local part of the algebraic K-theory of the one-point space relative to the K-theory of the integers. The notion of con...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 1993-07, Vol.118 (3), p.1005-1012, Article 1005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we show how the chromatic convergence theorem of Hopkins and Ravenel implies that a tower of relative algebraic K-theories constructed by Waldhausen converges to the p-local part of the algebraic K-theory of the one-point space relative to the K-theory of the integers. The notion of convergence used here is made precise using the language of pro-homotopy theory. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.2307/2160154 |