On the Range of the Radon d-Plane Transform and Its Dual
We present direct, group-theoretic proofs of the range theorem for the Radon d-plane transform f → f̂ on Y(Rn). (The original proof, by Richter, involves extensive use of local coordinate calculations on G(d, n), the Grassmann manifold of affine d-planes in Rn.) We show that moment conditions are no...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 1991-10, Vol.327 (2), p.601-619 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present direct, group-theoretic proofs of the range theorem for the Radon d-plane transform f → f̂ on Y(Rn). (The original proof, by Richter, involves extensive use of local coordinate calculations on G(d, n), the Grassmann manifold of affine d-planes in Rn.) We show that moment conditions are not sufficient to describe this range when$d < n - 1$, in contrast to the compactly supported case. Finally, we show that the dual d-plane transform maps E(G(d, n)) surjectively onto E(Rn). |
---|---|
ISSN: | 0002-9947 |
DOI: | 10.2307/2001816 |