A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps
We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u 1 < u 2 < · ·· and d 1 d 2 < · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional unifo...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 1995-09, Vol.27 (3), p.652-691 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 691 |
---|---|
container_issue | 3 |
container_start_page | 652 |
container_title | Advances in applied probability |
container_volume | 27 |
creator | Kesten, Harry |
description | We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1
L < ∞ and sequences u
1
< u
2
< · ·· and d
1
d
2
< · ·· such that Q(i, j) = 0 whenever i < ur < ur
+ L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is
for a suitable R and some R–
1-harmonic function f and R
–1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R
–1
µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n. |
doi_str_mv | 10.2307/1428129 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1428129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1428129</cupid><jstor_id>1428129</jstor_id><sourcerecordid>1428129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</originalsourceid><addsrcrecordid>eNp90N9KwzAUBvAgCs4pvkIuBB2sepKuSXs5hv9g6o1el9M0calrM5J2IiL4ND6YT-JkQy8Erw4HfnyH8xFyyOCUxyDP2IinjGdbpMdGMokEiNE26QEAi1Ih012yF0K1WmOZQo_cjqnH1jo6t7VtaTvTzuuaGufpSeiKAb1B_-SWVM3QNoG6hr6yIR_Sz_ePN_ps2xktXNeUuqRVVy_CPtkxOA_6YDP75OHi_H5yFU3vLq8n42mkuBRtZAB4lgjkzIBOCpMwIWIGpQYlmNSIaNAonmDCEyFKNCA5LyRXTKApQMd9crzOVd6F4LXJF97W6F9yBvl3DfmmhpU8WssFBoVz47FRNvxwnmYZZ_KXVaF1_p-0weYu1oW35aPOK9f5ZvXrH_sF07xzjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Kesten, Harry</creator><creatorcontrib>Kesten, Harry</creatorcontrib><description><![CDATA[We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1
L < ∞ and sequences u
1
< u
2
< · ·· and d
1
d
2
< · ·· such that Q(i, j) = 0 whenever i < ur < ur
+ L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is
for a suitable R and some R–
1-harmonic function f and R
–1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R
–1
µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.]]></description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1428129</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Ergodic theory ; Exact sciences and technology ; General Applied Probability ; Integers ; Markov chains ; Markov processes ; Mathematical theorems ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Random walk ; Ratios ; Sciences and techniques of general use ; Transition probabilities ; Uniformity</subject><ispartof>Advances in applied probability, 1995-09, Vol.27 (3), p.652-691</ispartof><rights>Copyright © Applied Probability Trust 1995</rights><rights>Copyright 1995 Applied Probability Trust</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</citedby><cites>FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428129$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428129$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2899217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kesten, Harry</creatorcontrib><title>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description><![CDATA[We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1
L < ∞ and sequences u
1
< u
2
< · ·· and d
1
d
2
< · ·· such that Q(i, j) = 0 whenever i < ur < ur
+ L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is
for a suitable R and some R–
1-harmonic function f and R
–1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R
–1
µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.]]></description><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>General Applied Probability</subject><subject>Integers</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Ratios</subject><subject>Sciences and techniques of general use</subject><subject>Transition probabilities</subject><subject>Uniformity</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp90N9KwzAUBvAgCs4pvkIuBB2sepKuSXs5hv9g6o1el9M0calrM5J2IiL4ND6YT-JkQy8Erw4HfnyH8xFyyOCUxyDP2IinjGdbpMdGMokEiNE26QEAi1Ih012yF0K1WmOZQo_cjqnH1jo6t7VtaTvTzuuaGufpSeiKAb1B_-SWVM3QNoG6hr6yIR_Sz_ePN_ps2xktXNeUuqRVVy_CPtkxOA_6YDP75OHi_H5yFU3vLq8n42mkuBRtZAB4lgjkzIBOCpMwIWIGpQYlmNSIaNAonmDCEyFKNCA5LyRXTKApQMd9crzOVd6F4LXJF97W6F9yBvl3DfmmhpU8WssFBoVz47FRNvxwnmYZZ_KXVaF1_p-0weYu1oW35aPOK9f5ZvXrH_sF07xzjg</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Kesten, Harry</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950901</creationdate><title>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</title><author>Kesten, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>General Applied Probability</topic><topic>Integers</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Ratios</topic><topic>Sciences and techniques of general use</topic><topic>Transition probabilities</topic><topic>Uniformity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kesten, Harry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kesten, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1995-09-01</date><risdate>1995</risdate><volume>27</volume><issue>3</issue><spage>652</spage><epage>691</epage><pages>652-691</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract><![CDATA[We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1
L < ∞ and sequences u
1
< u
2
< · ·· and d
1
d
2
< · ·· such that Q(i, j) = 0 whenever i < ur < ur
+ L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is
for a suitable R and some R–
1-harmonic function f and R
–1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R
–1
µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.]]></abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1428129</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 1995-09, Vol.27 (3), p.652-691 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_crossref_primary_10_2307_1428129 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Ergodic theory Exact sciences and technology General Applied Probability Integers Markov chains Markov processes Mathematical theorems Mathematics Probability and statistics Probability theory and stochastic processes Random variables Random walk Ratios Sciences and techniques of general use Transition probabilities Uniformity |
title | A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20ratio%20limit%20theorem%20for%20(sub)%20Markov%20chains%20on%20%7B1,2,%20%E2%80%A6%7D%20with%20bounded%20jumps&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Kesten,%20Harry&rft.date=1995-09-01&rft.volume=27&rft.issue=3&rft.spage=652&rft.epage=691&rft.pages=652-691&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1428129&rft_dat=%3Cjstor_cross%3E1428129%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_2307_1428129&rft_jstor_id=1428129&rfr_iscdi=true |