A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps

We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u 1 < u 2 < · ·· and d 1 d 2 < · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional unifo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1995-09, Vol.27 (3), p.652-691
1. Verfasser: Kesten, Harry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 3
container_start_page 652
container_title Advances in applied probability
container_volume 27
creator Kesten, Harry
description We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u 1 < u 2 < · ·· and d 1 d 2 < · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is for a suitable R and some R– 1-harmonic function f and R –1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R –1 µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.
doi_str_mv 10.2307/1428129
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1428129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1428129</cupid><jstor_id>1428129</jstor_id><sourcerecordid>1428129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</originalsourceid><addsrcrecordid>eNp90N9KwzAUBvAgCs4pvkIuBB2sepKuSXs5hv9g6o1el9M0calrM5J2IiL4ND6YT-JkQy8Erw4HfnyH8xFyyOCUxyDP2IinjGdbpMdGMokEiNE26QEAi1Ih012yF0K1WmOZQo_cjqnH1jo6t7VtaTvTzuuaGufpSeiKAb1B_-SWVM3QNoG6hr6yIR_Sz_ePN_ps2xktXNeUuqRVVy_CPtkxOA_6YDP75OHi_H5yFU3vLq8n42mkuBRtZAB4lgjkzIBOCpMwIWIGpQYlmNSIaNAonmDCEyFKNCA5LyRXTKApQMd9crzOVd6F4LXJF97W6F9yBvl3DfmmhpU8WssFBoVz47FRNvxwnmYZZ_KXVaF1_p-0weYu1oW35aPOK9f5ZvXrH_sF07xzjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Kesten, Harry</creator><creatorcontrib>Kesten, Harry</creatorcontrib><description><![CDATA[We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u 1 < u 2 < · ·· and d 1 d 2 < · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is for a suitable R and some R– 1-harmonic function f and R –1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R –1 µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.]]></description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1428129</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Ergodic theory ; Exact sciences and technology ; General Applied Probability ; Integers ; Markov chains ; Markov processes ; Mathematical theorems ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Random walk ; Ratios ; Sciences and techniques of general use ; Transition probabilities ; Uniformity</subject><ispartof>Advances in applied probability, 1995-09, Vol.27 (3), p.652-691</ispartof><rights>Copyright © Applied Probability Trust 1995</rights><rights>Copyright 1995 Applied Probability Trust</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</citedby><cites>FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1428129$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1428129$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2899217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kesten, Harry</creatorcontrib><title>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description><![CDATA[We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u 1 < u 2 < · ·· and d 1 d 2 < · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is for a suitable R and some R– 1-harmonic function f and R –1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R –1 µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.]]></description><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>General Applied Probability</subject><subject>Integers</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Ratios</subject><subject>Sciences and techniques of general use</subject><subject>Transition probabilities</subject><subject>Uniformity</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp90N9KwzAUBvAgCs4pvkIuBB2sepKuSXs5hv9g6o1el9M0calrM5J2IiL4ND6YT-JkQy8Erw4HfnyH8xFyyOCUxyDP2IinjGdbpMdGMokEiNE26QEAi1Ih012yF0K1WmOZQo_cjqnH1jo6t7VtaTvTzuuaGufpSeiKAb1B_-SWVM3QNoG6hr6yIR_Sz_ePN_ps2xktXNeUuqRVVy_CPtkxOA_6YDP75OHi_H5yFU3vLq8n42mkuBRtZAB4lgjkzIBOCpMwIWIGpQYlmNSIaNAonmDCEyFKNCA5LyRXTKApQMd9crzOVd6F4LXJF97W6F9yBvl3DfmmhpU8WssFBoVz47FRNvxwnmYZZ_KXVaF1_p-0weYu1oW35aPOK9f5ZvXrH_sF07xzjg</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Kesten, Harry</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950901</creationdate><title>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</title><author>Kesten, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-f002956a21f0e5bf5166310de0c617eaaafafc25a52566daf0722b72c16afb0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>General Applied Probability</topic><topic>Integers</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Ratios</topic><topic>Sciences and techniques of general use</topic><topic>Transition probabilities</topic><topic>Uniformity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kesten, Harry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kesten, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1995-09-01</date><risdate>1995</risdate><volume>27</volume><issue>3</issue><spage>652</spage><epage>691</epage><pages>652-691</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract><![CDATA[We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u 1 < u 2 < · ·· and d 1 d 2 < · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is for a suitable R and some R– 1-harmonic function f and R –1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R –1 µ = µQ). The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.]]></abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1428129</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 1995-09, Vol.27 (3), p.652-691
issn 0001-8678
1475-6064
language eng
recordid cdi_crossref_primary_10_2307_1428129
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Ergodic theory
Exact sciences and technology
General Applied Probability
Integers
Markov chains
Markov processes
Mathematical theorems
Mathematics
Probability and statistics
Probability theory and stochastic processes
Random variables
Random walk
Ratios
Sciences and techniques of general use
Transition probabilities
Uniformity
title A ratio limit theorem for (sub) Markov chains on {1,2, …} with bounded jumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20ratio%20limit%20theorem%20for%20(sub)%20Markov%20chains%20on%20%7B1,2,%20%E2%80%A6%7D%20with%20bounded%20jumps&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Kesten,%20Harry&rft.date=1995-09-01&rft.volume=27&rft.issue=3&rft.spage=652&rft.epage=691&rft.pages=652-691&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1428129&rft_dat=%3Cjstor_cross%3E1428129%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_2307_1428129&rft_jstor_id=1428129&rfr_iscdi=true