Simulated annealing process in general state space

The stochastic process corresponding to the simulated annealing optimization algorithm is generalized to the case of an arbitrary state space. Conditions for the strong and weak convergence of the process are established. In addition the relation between the size of the generating distributions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1991-12, Vol.23 (4), p.866-893
Hauptverfasser: Haario, Heikki, Saksman, Eero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue 4
container_start_page 866
container_title Advances in applied probability
container_volume 23
creator Haario, Heikki
Saksman, Eero
description The stochastic process corresponding to the simulated annealing optimization algorithm is generalized to the case of an arbitrary state space. Conditions for the strong and weak convergence of the process are established. In addition the relation between the size of the generating distributions and the possible rate of cooling is studied.
doi_str_mv 10.2307/1427681
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1427681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1427681</cupid><jstor_id>1427681</jstor_id><sourcerecordid>1427681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-572098be88ef802fa27a535dfc135d5479b79329accfbf5dbb0cc41450e853f93</originalsourceid><addsrcrecordid>eNp9z01LxDAQBuAgCtZV_As9COKhOkmTJj3K4hcseFDPZZImpaVNS9I9-O-tbNGD4GWGgYd3eAm5pHDLcpB3lDNZKHpEEsqlyAoo-DFJAIBmqpDqlJzF2C1nLhUkhL21w77H2dYpem-xb32TTmE0Nsa09WljvQ3Yp3FeTBonNPacnDjso71Y94Z8PD68b5-z3evTy_Z-lxnG5ZwJyaBU2iplnQLmkEkUuaidocsUXJZaljkr0Rinnai1BmM45QKsErkr8w25PuSaMMYYrKum0A4YPisK1XfVaq26yKuDnDAa7F1Ab9r4wwUFJlj5y7o4j-GftJv1Lw46tHVjq27cB790_WO_AG-Taf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulated annealing process in general state space</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Haario, Heikki ; Saksman, Eero</creator><creatorcontrib>Haario, Heikki ; Saksman, Eero</creatorcontrib><description>The stochastic process corresponding to the simulated annealing optimization algorithm is generalized to the case of an arbitrary state space. Conditions for the strong and weak convergence of the process are established. In addition the relation between the size of the generating distributions and the possible rate of cooling is studied.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1427681</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Absolute minimum ; Annealing ; Applied sciences ; Cooling ; Ergodic theory ; Exact sciences and technology ; Markov chains ; Markov processes ; Mathematical functions ; Mathematical minima ; Operational research and scientific management ; Operational research. Management science ; Optimization. Search problems ; Perceptron convergence procedure ; Simulated annealing</subject><ispartof>Advances in applied probability, 1991-12, Vol.23 (4), p.866-893</ispartof><rights>Copyright © Applied Probability Trust 1991</rights><rights>Copyright 1991 Applied Probability Trust</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-572098be88ef802fa27a535dfc135d5479b79329accfbf5dbb0cc41450e853f93</citedby><cites>FETCH-LOGICAL-c247t-572098be88ef802fa27a535dfc135d5479b79329accfbf5dbb0cc41450e853f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1427681$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1427681$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5102529$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haario, Heikki</creatorcontrib><creatorcontrib>Saksman, Eero</creatorcontrib><title>Simulated annealing process in general state space</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>The stochastic process corresponding to the simulated annealing optimization algorithm is generalized to the case of an arbitrary state space. Conditions for the strong and weak convergence of the process are established. In addition the relation between the size of the generating distributions and the possible rate of cooling is studied.</description><subject>Absolute minimum</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Cooling</subject><subject>Ergodic theory</subject><subject>Exact sciences and technology</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical functions</subject><subject>Mathematical minima</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization. Search problems</subject><subject>Perceptron convergence procedure</subject><subject>Simulated annealing</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9z01LxDAQBuAgCtZV_As9COKhOkmTJj3K4hcseFDPZZImpaVNS9I9-O-tbNGD4GWGgYd3eAm5pHDLcpB3lDNZKHpEEsqlyAoo-DFJAIBmqpDqlJzF2C1nLhUkhL21w77H2dYpem-xb32TTmE0Nsa09WljvQ3Yp3FeTBonNPacnDjso71Y94Z8PD68b5-z3evTy_Z-lxnG5ZwJyaBU2iplnQLmkEkUuaidocsUXJZaljkr0Rinnai1BmM45QKsErkr8w25PuSaMMYYrKum0A4YPisK1XfVaq26yKuDnDAa7F1Ab9r4wwUFJlj5y7o4j-GftJv1Lw46tHVjq27cB790_WO_AG-Taf4</recordid><startdate>19911201</startdate><enddate>19911201</enddate><creator>Haario, Heikki</creator><creator>Saksman, Eero</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19911201</creationdate><title>Simulated annealing process in general state space</title><author>Haario, Heikki ; Saksman, Eero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-572098be88ef802fa27a535dfc135d5479b79329accfbf5dbb0cc41450e853f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Absolute minimum</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Cooling</topic><topic>Ergodic theory</topic><topic>Exact sciences and technology</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical functions</topic><topic>Mathematical minima</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization. Search problems</topic><topic>Perceptron convergence procedure</topic><topic>Simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haario, Heikki</creatorcontrib><creatorcontrib>Saksman, Eero</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haario, Heikki</au><au>Saksman, Eero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated annealing process in general state space</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1991-12-01</date><risdate>1991</risdate><volume>23</volume><issue>4</issue><spage>866</spage><epage>893</epage><pages>866-893</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>The stochastic process corresponding to the simulated annealing optimization algorithm is generalized to the case of an arbitrary state space. Conditions for the strong and weak convergence of the process are established. In addition the relation between the size of the generating distributions and the possible rate of cooling is studied.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1427681</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 1991-12, Vol.23 (4), p.866-893
issn 0001-8678
1475-6064
language eng
recordid cdi_crossref_primary_10_2307_1427681
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Absolute minimum
Annealing
Applied sciences
Cooling
Ergodic theory
Exact sciences and technology
Markov chains
Markov processes
Mathematical functions
Mathematical minima
Operational research and scientific management
Operational research. Management science
Optimization. Search problems
Perceptron convergence procedure
Simulated annealing
title Simulated annealing process in general state space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20annealing%20process%20in%20general%20state%20space&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Haario,%20Heikki&rft.date=1991-12-01&rft.volume=23&rft.issue=4&rft.spage=866&rft.epage=893&rft.pages=866-893&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1427681&rft_dat=%3Cjstor_cross%3E1427681%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_2307_1427681&rft_jstor_id=1427681&rfr_iscdi=true