Distributions with complete monotone derivative and geometric infinite divisibility

It is shown that a distribution with complete monotone derivative is geometrically infinitely divisible and that the class of distributions with complete monotone derivative is a proper subclass of the class of geometrically infinitely divisible distributions.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1990-09, Vol.22 (3), p.751-754
Hauptverfasser: Pillai, R. N., Sandhya, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 3
container_start_page 751
container_title Advances in applied probability
container_volume 22
creator Pillai, R. N.
Sandhya, E.
description It is shown that a distribution with complete monotone derivative is geometrically infinitely divisible and that the class of distributions with complete monotone derivative is a proper subclass of the class of geometrically infinitely divisible distributions.
doi_str_mv 10.2307/1427468
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1427468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1427468</cupid><jstor_id>1427468</jstor_id><sourcerecordid>1427468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-f3bbee0038628b0e939cab0d262c058270d00dfa4370a8eb939efa69a2cd53</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKv4F_ZBER9WZ7OXZB-lXqEgqO9Lblun7CYlSSv990Za8EHwaRjmmzNnDiHnBdzQEthtUVFWNfyATIqK1XkDTXVIJgBQ5Lxh_JichLBMbck4TMj7PYboUa4jOhuyL4yfmXLjajDRZKOzLjprMm08bkTEjcmE1dnCuNGkLZWh7dFiQjVuMKDEAeP2lBz1YgjmbF-n5O3x4WP2nM9fn15md_NcUV7EvC-lNCYZ4Q3lEkxbtkpI0LShCmpOGWgA3YuqZCC4kWluetG0gipdl1NytRNV3oXgTd-tPI7Cb7sCup8gun0QibzckSsRlBh6L6zC8Iu3JS3qiiXuYsctQ3T-H7nr_WExSo96YbqlW3ubPv3DfgOuH3cx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributions with complete monotone derivative and geometric infinite divisibility</title><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><creator>Pillai, R. N. ; Sandhya, E.</creator><creatorcontrib>Pillai, R. N. ; Sandhya, E.</creatorcontrib><description>It is shown that a distribution with complete monotone derivative is geometrically infinitely divisible and that the class of distributions with complete monotone derivative is a proper subclass of the class of geometrically infinitely divisible distributions.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1427468</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Distribution theory ; Division ; Exact sciences and technology ; Laplace transformation ; Letters to the Editor ; Mathematics ; Probability and statistics ; Probability distributions ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use</subject><ispartof>Advances in applied probability, 1990-09, Vol.22 (3), p.751-754</ispartof><rights>Copyright © Applied Probability Trust 1990</rights><rights>Copyright 1990 Applied Probability Trust</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-f3bbee0038628b0e939cab0d262c058270d00dfa4370a8eb939efa69a2cd53</citedby><cites>FETCH-LOGICAL-c281t-f3bbee0038628b0e939cab0d262c058270d00dfa4370a8eb939efa69a2cd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1427468$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1427468$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19321547$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillai, R. N.</creatorcontrib><creatorcontrib>Sandhya, E.</creatorcontrib><title>Distributions with complete monotone derivative and geometric infinite divisibility</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>It is shown that a distribution with complete monotone derivative is geometrically infinitely divisible and that the class of distributions with complete monotone derivative is a proper subclass of the class of geometrically infinitely divisible distributions.</description><subject>Distribution theory</subject><subject>Division</subject><subject>Exact sciences and technology</subject><subject>Laplace transformation</subject><subject>Letters to the Editor</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability distributions</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKv4F_ZBER9WZ7OXZB-lXqEgqO9Lblun7CYlSSv990Za8EHwaRjmmzNnDiHnBdzQEthtUVFWNfyATIqK1XkDTXVIJgBQ5Lxh_JichLBMbck4TMj7PYboUa4jOhuyL4yfmXLjajDRZKOzLjprMm08bkTEjcmE1dnCuNGkLZWh7dFiQjVuMKDEAeP2lBz1YgjmbF-n5O3x4WP2nM9fn15md_NcUV7EvC-lNCYZ4Q3lEkxbtkpI0LShCmpOGWgA3YuqZCC4kWluetG0gipdl1NytRNV3oXgTd-tPI7Cb7sCup8gun0QibzckSsRlBh6L6zC8Iu3JS3qiiXuYsctQ3T-H7nr_WExSo96YbqlW3ubPv3DfgOuH3cx</recordid><startdate>19900901</startdate><enddate>19900901</enddate><creator>Pillai, R. N.</creator><creator>Sandhya, E.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900901</creationdate><title>Distributions with complete monotone derivative and geometric infinite divisibility</title><author>Pillai, R. N. ; Sandhya, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-f3bbee0038628b0e939cab0d262c058270d00dfa4370a8eb939efa69a2cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Distribution theory</topic><topic>Division</topic><topic>Exact sciences and technology</topic><topic>Laplace transformation</topic><topic>Letters to the Editor</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability distributions</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillai, R. N.</creatorcontrib><creatorcontrib>Sandhya, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillai, R. N.</au><au>Sandhya, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributions with complete monotone derivative and geometric infinite divisibility</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1990-09-01</date><risdate>1990</risdate><volume>22</volume><issue>3</issue><spage>751</spage><epage>754</epage><pages>751-754</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>It is shown that a distribution with complete monotone derivative is geometrically infinitely divisible and that the class of distributions with complete monotone derivative is a proper subclass of the class of geometrically infinitely divisible distributions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1427468</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 1990-09, Vol.22 (3), p.751-754
issn 0001-8678
1475-6064
language eng
recordid cdi_crossref_primary_10_2307_1427468
source JSTOR Mathematics and Statistics; JSTOR
subjects Distribution theory
Division
Exact sciences and technology
Laplace transformation
Letters to the Editor
Mathematics
Probability and statistics
Probability distributions
Probability theory and stochastic processes
Random variables
Sciences and techniques of general use
title Distributions with complete monotone derivative and geometric infinite divisibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributions%20with%20complete%20monotone%20derivative%20and%20geometric%20infinite%20divisibility&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Pillai,%20R.%20N.&rft.date=1990-09-01&rft.volume=22&rft.issue=3&rft.spage=751&rft.epage=754&rft.pages=751-754&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1427468&rft_dat=%3Cjstor_cross%3E1427468%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_2307_1427468&rft_jstor_id=1427468&rfr_iscdi=true