The maximum of a random walk whose mean path has a maximum

This paper discusses the joint distribution of the maximum and the time at which it is attained, of a random walk whose mean path is a curvilinear trend which itself has a maximum. A typical example of such a problem is the distribution of the maximum number of infectives present during the course o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1985-03, Vol.17 (1), p.85-99
Hauptverfasser: Daniels, H. E., Skyrme, T. H. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 85
container_title Advances in applied probability
container_volume 17
creator Daniels, H. E.
Skyrme, T. H. R.
description This paper discusses the joint distribution of the maximum and the time at which it is attained, of a random walk whose mean path is a curvilinear trend which itself has a maximum. A typical example of such a problem is the distribution of the maximum number of infectives present during the course of an epidemic. Another example where the random walk is constrained to terminate at 0 after a given time is provided by the distribution of the strength and breaking extension of a bundle of fibres. A diffusion approximation to the joint distribution is obtained for the general case of a Brownian bridge. In the commonest class of cases which includes the two examples mentioned, a certain integral equation has to be solved. Its solution enables the marginal distribution of the time to reach the maximum to be tabulated, and the marginal distribution of the maximum confirms the results previously obtained by Daniels (1974) and Barbour (1975). Of particular interest is the conditional expectation of the maximum for a given time of attainment which behaves asymmetrically.
doi_str_mv 10.2307/1427054
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1427054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_1427054</cupid><jstor_id>1427054</jstor_id><sourcerecordid>1427054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-261d38872987e28c8741e77743dc4ddf228e8a70385ef44420bdebfdc9623b3d3</originalsourceid><addsrcrecordid>eNp9z01Lw0AQBuBFFIxV_At7EMRDdL-S2XqT4hcUvNRzmOyHSW2SsttS_feuNOhB8DQM8_AOLyHnnF0LyeCGKwGsUAck4wqKvGSlOiQZY4znugR9TE5iXKZVgmYZuV00jnb40Xbbjg6eIg3Y26GjO1y9010zxHR22NM1bhraYExi5KfkyOMqurNxTsjrw_1i9pTPXx6fZ3fz3AgFm1yU3EqtQUw1OKGNBsUdAChpjbLWC6GdRmBSF84rpQSrrau9NdNSyFpaOSGX-1wThhiD89U6tB2Gz4qz6rtyNVZO8mIv1xgNrnyqYtr4w6ccEip-2TJuhvBP2tX4F7s6tPbNVcthG_rU9Y_9Atula3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The maximum of a random walk whose mean path has a maximum</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Daniels, H. E. ; Skyrme, T. H. R.</creator><creatorcontrib>Daniels, H. E. ; Skyrme, T. H. R.</creatorcontrib><description>This paper discusses the joint distribution of the maximum and the time at which it is attained, of a random walk whose mean path is a curvilinear trend which itself has a maximum. A typical example of such a problem is the distribution of the maximum number of infectives present during the course of an epidemic. Another example where the random walk is constrained to terminate at 0 after a given time is provided by the distribution of the strength and breaking extension of a bundle of fibres. A diffusion approximation to the joint distribution is obtained for the general case of a Brownian bridge. In the commonest class of cases which includes the two examples mentioned, a certain integral equation has to be solved. Its solution enables the marginal distribution of the time to reach the maximum to be tabulated, and the marginal distribution of the maximum confirms the results previously obtained by Daniels (1974) and Barbour (1975). Of particular interest is the conditional expectation of the maximum for a given time of attainment which behaves asymmetrically.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.2307/1427054</identifier><identifier>CODEN: AAPBBD</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Airy function ; Approximation ; Brownian bridge ; Brownian motion ; Differential equations ; Epidemics ; Exact sciences and technology ; Markov processes ; Mathematical constants ; Mathematics ; Numerical integration ; Probability and statistics ; Probability theory and stochastic processes ; Random walk ; Sciences and techniques of general use</subject><ispartof>Advances in applied probability, 1985-03, Vol.17 (1), p.85-99</ispartof><rights>Copyright © Applied Probability Trust 1985</rights><rights>Copyright 1985 Applied Probability Trust</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-261d38872987e28c8741e77743dc4ddf228e8a70385ef44420bdebfdc9623b3d3</citedby><cites>FETCH-LOGICAL-c247t-261d38872987e28c8741e77743dc4ddf228e8a70385ef44420bdebfdc9623b3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1427054$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1427054$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,27907,27908,58000,58004,58233,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9175435$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Daniels, H. E.</creatorcontrib><creatorcontrib>Skyrme, T. H. R.</creatorcontrib><title>The maximum of a random walk whose mean path has a maximum</title><title>Advances in applied probability</title><addtitle>Advances in Applied Probability</addtitle><description>This paper discusses the joint distribution of the maximum and the time at which it is attained, of a random walk whose mean path is a curvilinear trend which itself has a maximum. A typical example of such a problem is the distribution of the maximum number of infectives present during the course of an epidemic. Another example where the random walk is constrained to terminate at 0 after a given time is provided by the distribution of the strength and breaking extension of a bundle of fibres. A diffusion approximation to the joint distribution is obtained for the general case of a Brownian bridge. In the commonest class of cases which includes the two examples mentioned, a certain integral equation has to be solved. Its solution enables the marginal distribution of the time to reach the maximum to be tabulated, and the marginal distribution of the maximum confirms the results previously obtained by Daniels (1974) and Barbour (1975). Of particular interest is the conditional expectation of the maximum for a given time of attainment which behaves asymmetrically.</description><subject>Airy function</subject><subject>Approximation</subject><subject>Brownian bridge</subject><subject>Brownian motion</subject><subject>Differential equations</subject><subject>Epidemics</subject><subject>Exact sciences and technology</subject><subject>Markov processes</subject><subject>Mathematical constants</subject><subject>Mathematics</subject><subject>Numerical integration</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random walk</subject><subject>Sciences and techniques of general use</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9z01Lw0AQBuBFFIxV_At7EMRDdL-S2XqT4hcUvNRzmOyHSW2SsttS_feuNOhB8DQM8_AOLyHnnF0LyeCGKwGsUAck4wqKvGSlOiQZY4znugR9TE5iXKZVgmYZuV00jnb40Xbbjg6eIg3Y26GjO1y9010zxHR22NM1bhraYExi5KfkyOMqurNxTsjrw_1i9pTPXx6fZ3fz3AgFm1yU3EqtQUw1OKGNBsUdAChpjbLWC6GdRmBSF84rpQSrrau9NdNSyFpaOSGX-1wThhiD89U6tB2Gz4qz6rtyNVZO8mIv1xgNrnyqYtr4w6ccEip-2TJuhvBP2tX4F7s6tPbNVcthG_rU9Y_9Atula3I</recordid><startdate>19850301</startdate><enddate>19850301</enddate><creator>Daniels, H. E.</creator><creator>Skyrme, T. H. R.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19850301</creationdate><title>The maximum of a random walk whose mean path has a maximum</title><author>Daniels, H. E. ; Skyrme, T. H. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-261d38872987e28c8741e77743dc4ddf228e8a70385ef44420bdebfdc9623b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Airy function</topic><topic>Approximation</topic><topic>Brownian bridge</topic><topic>Brownian motion</topic><topic>Differential equations</topic><topic>Epidemics</topic><topic>Exact sciences and technology</topic><topic>Markov processes</topic><topic>Mathematical constants</topic><topic>Mathematics</topic><topic>Numerical integration</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random walk</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniels, H. E.</creatorcontrib><creatorcontrib>Skyrme, T. H. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniels, H. E.</au><au>Skyrme, T. H. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The maximum of a random walk whose mean path has a maximum</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Advances in Applied Probability</addtitle><date>1985-03-01</date><risdate>1985</risdate><volume>17</volume><issue>1</issue><spage>85</spage><epage>99</epage><pages>85-99</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><coden>AAPBBD</coden><abstract>This paper discusses the joint distribution of the maximum and the time at which it is attained, of a random walk whose mean path is a curvilinear trend which itself has a maximum. A typical example of such a problem is the distribution of the maximum number of infectives present during the course of an epidemic. Another example where the random walk is constrained to terminate at 0 after a given time is provided by the distribution of the strength and breaking extension of a bundle of fibres. A diffusion approximation to the joint distribution is obtained for the general case of a Brownian bridge. In the commonest class of cases which includes the two examples mentioned, a certain integral equation has to be solved. Its solution enables the marginal distribution of the time to reach the maximum to be tabulated, and the marginal distribution of the maximum confirms the results previously obtained by Daniels (1974) and Barbour (1975). Of particular interest is the conditional expectation of the maximum for a given time of attainment which behaves asymmetrically.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/1427054</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 1985-03, Vol.17 (1), p.85-99
issn 0001-8678
1475-6064
language eng
recordid cdi_crossref_primary_10_2307_1427054
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Airy function
Approximation
Brownian bridge
Brownian motion
Differential equations
Epidemics
Exact sciences and technology
Markov processes
Mathematical constants
Mathematics
Numerical integration
Probability and statistics
Probability theory and stochastic processes
Random walk
Sciences and techniques of general use
title The maximum of a random walk whose mean path has a maximum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20maximum%20of%20a%20random%20walk%20whose%20mean%20path%20has%20a%20maximum&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Daniels,%20H.%20E.&rft.date=1985-03-01&rft.volume=17&rft.issue=1&rft.spage=85&rft.epage=99&rft.pages=85-99&rft.issn=0001-8678&rft.eissn=1475-6064&rft.coden=AAPBBD&rft_id=info:doi/10.2307/1427054&rft_dat=%3Cjstor_cross%3E1427054%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_2307_1427054&rft_jstor_id=1427054&rfr_iscdi=true