hierarchical approach to multivariate spatial modeling and prediction

We propose a hierarchical model for multivariate spatial modeling and prediction under which one specifies a joint distribution for a multivariate spatial process indirectly through specification of simpler conditional models. This approach is similar to standard methods known as cokriging and "...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 1999-03, Vol.4 (1), p.29-56
Hauptverfasser: Royle, J.A, Berliner, L.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 29
container_title Journal of agricultural, biological, and environmental statistics
container_volume 4
creator Royle, J.A
Berliner, L.M
description We propose a hierarchical model for multivariate spatial modeling and prediction under which one specifies a joint distribution for a multivariate spatial process indirectly through specification of simpler conditional models. This approach is similar to standard methods known as cokriging and "kriging with external drift," but avoids some of the inherent difficulties in these two approaches including specification of valid joint covariance models and restriction to exhaustively sampled covariates. Moreover, both existing approaches can be formulated in this hierarchical framework. The hierarchical approach is ideally suited for, but not restricted for use in, situations in which known "cause/effect" relationships exist. Because the hierarchical approach models dependence between variables in conditional means, as opposed to cross-covariances, very complicated relationships are more easily parameterized. We suggest an iterative estimation procedure that combines generalized least squares with imputation of missing values using the best linear unbiased predictor. An example is given that involves prediction of a daily ozone summary from maximum daily temperature in the Midwest.
doi_str_mv 10.2307/1400420
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1400420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1400420</jstor_id><sourcerecordid>1400420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d4f0ce45d6d53f39b569d04e53b55e0aa5738eedd0d00e7e431d25188846ea143</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgCq6r-AcEexA8VSdN0jRHWdYPWPCgey6zSbrN0m1LEgX_vZEu7mkG5uGFdwi5pvBQMJCPlAPwAk7IjAom86JU7DTtUIlcUirPyUUIOwDKSihmZNk669Hr1mnsMhxHP6Buszhk-68uum_0DqPNwojRJbAfjO1cv82wN9norXE6uqG_JGcNdsFeHeacrJ-Xn4vXfPX-8rZ4WuWalSzmhjegLRemNII1TG1EqQxwK9hGCAuIQrLKWmPAAFhpOaOmELSqKl5apJzNyf2Uq_0QgrdNPXq3R_9TU6j_2teH9kneTXLEkJo1HnvtwpFXSkGlEruZ2C7EwR_P_ym307nBocatTwnrjyL9DgqVDJXsF_cna0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>hierarchical approach to multivariate spatial modeling and prediction</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Royle, J.A ; Berliner, L.M</creator><creatorcontrib>Royle, J.A ; Berliner, L.M</creatorcontrib><description>We propose a hierarchical model for multivariate spatial modeling and prediction under which one specifies a joint distribution for a multivariate spatial process indirectly through specification of simpler conditional models. This approach is similar to standard methods known as cokriging and "kriging with external drift," but avoids some of the inherent difficulties in these two approaches including specification of valid joint covariance models and restriction to exhaustively sampled covariates. Moreover, both existing approaches can be formulated in this hierarchical framework. The hierarchical approach is ideally suited for, but not restricted for use in, situations in which known "cause/effect" relationships exist. Because the hierarchical approach models dependence between variables in conditional means, as opposed to cross-covariances, very complicated relationships are more easily parameterized. We suggest an iterative estimation procedure that combines generalized least squares with imputation of missing values using the best linear unbiased predictor. An example is given that involves prediction of a daily ozone summary from maximum daily temperature in the Midwest.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.2307/1400420</identifier><language>eng</language><publisher>Washington, DC: American Statistical Association and the International Biometric Society</publisher><subject>Applied sciences ; Atmospheric pollution ; Covariance ; Covariance matrices ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; geostatistics ; Kriging ; Meteorology ; Missing data ; Modeling ; Multilevel models ; multivariate analysis ; Other topics in atmospheric geophysics ; Ozone ; Parametric models ; Pollution ; prediction ; Spatial models</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 1999-03, Vol.4 (1), p.29-56</ispartof><rights>Copyright 1999 American Statistical Association and the International Biometric Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d4f0ce45d6d53f39b569d04e53b55e0aa5738eedd0d00e7e431d25188846ea143</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1400420$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1400420$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1899089$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Royle, J.A</creatorcontrib><creatorcontrib>Berliner, L.M</creatorcontrib><title>hierarchical approach to multivariate spatial modeling and prediction</title><title>Journal of agricultural, biological, and environmental statistics</title><description>We propose a hierarchical model for multivariate spatial modeling and prediction under which one specifies a joint distribution for a multivariate spatial process indirectly through specification of simpler conditional models. This approach is similar to standard methods known as cokriging and "kriging with external drift," but avoids some of the inherent difficulties in these two approaches including specification of valid joint covariance models and restriction to exhaustively sampled covariates. Moreover, both existing approaches can be formulated in this hierarchical framework. The hierarchical approach is ideally suited for, but not restricted for use in, situations in which known "cause/effect" relationships exist. Because the hierarchical approach models dependence between variables in conditional means, as opposed to cross-covariances, very complicated relationships are more easily parameterized. We suggest an iterative estimation procedure that combines generalized least squares with imputation of missing values using the best linear unbiased predictor. An example is given that involves prediction of a daily ozone summary from maximum daily temperature in the Midwest.</description><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>geostatistics</subject><subject>Kriging</subject><subject>Meteorology</subject><subject>Missing data</subject><subject>Modeling</subject><subject>Multilevel models</subject><subject>multivariate analysis</subject><subject>Other topics in atmospheric geophysics</subject><subject>Ozone</subject><subject>Parametric models</subject><subject>Pollution</subject><subject>prediction</subject><subject>Spatial models</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgCq6r-AcEexA8VSdN0jRHWdYPWPCgey6zSbrN0m1LEgX_vZEu7mkG5uGFdwi5pvBQMJCPlAPwAk7IjAom86JU7DTtUIlcUirPyUUIOwDKSihmZNk669Hr1mnsMhxHP6Buszhk-68uum_0DqPNwojRJbAfjO1cv82wN9norXE6uqG_JGcNdsFeHeacrJ-Xn4vXfPX-8rZ4WuWalSzmhjegLRemNII1TG1EqQxwK9hGCAuIQrLKWmPAAFhpOaOmELSqKl5apJzNyf2Uq_0QgrdNPXq3R_9TU6j_2teH9kneTXLEkJo1HnvtwpFXSkGlEruZ2C7EwR_P_ym307nBocatTwnrjyL9DgqVDJXsF_cna0w</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Royle, J.A</creator><creator>Berliner, L.M</creator><general>American Statistical Association and the International Biometric Society</general><general>American Statistical Association</general><general>International Biometric Society</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990301</creationdate><title>hierarchical approach to multivariate spatial modeling and prediction</title><author>Royle, J.A ; Berliner, L.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d4f0ce45d6d53f39b569d04e53b55e0aa5738eedd0d00e7e431d25188846ea143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>geostatistics</topic><topic>Kriging</topic><topic>Meteorology</topic><topic>Missing data</topic><topic>Modeling</topic><topic>Multilevel models</topic><topic>multivariate analysis</topic><topic>Other topics in atmospheric geophysics</topic><topic>Ozone</topic><topic>Parametric models</topic><topic>Pollution</topic><topic>prediction</topic><topic>Spatial models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Royle, J.A</creatorcontrib><creatorcontrib>Berliner, L.M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Royle, J.A</au><au>Berliner, L.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>hierarchical approach to multivariate spatial modeling and prediction</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>4</volume><issue>1</issue><spage>29</spage><epage>56</epage><pages>29-56</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>We propose a hierarchical model for multivariate spatial modeling and prediction under which one specifies a joint distribution for a multivariate spatial process indirectly through specification of simpler conditional models. This approach is similar to standard methods known as cokriging and "kriging with external drift," but avoids some of the inherent difficulties in these two approaches including specification of valid joint covariance models and restriction to exhaustively sampled covariates. Moreover, both existing approaches can be formulated in this hierarchical framework. The hierarchical approach is ideally suited for, but not restricted for use in, situations in which known "cause/effect" relationships exist. Because the hierarchical approach models dependence between variables in conditional means, as opposed to cross-covariances, very complicated relationships are more easily parameterized. We suggest an iterative estimation procedure that combines generalized least squares with imputation of missing values using the best linear unbiased predictor. An example is given that involves prediction of a daily ozone summary from maximum daily temperature in the Midwest.</abstract><cop>Washington, DC</cop><pub>American Statistical Association and the International Biometric Society</pub><doi>10.2307/1400420</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 1999-03, Vol.4 (1), p.29-56
issn 1085-7117
1537-2693
language eng
recordid cdi_crossref_primary_10_2307_1400420
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Applied sciences
Atmospheric pollution
Covariance
Covariance matrices
Earth, ocean, space
Exact sciences and technology
External geophysics
geostatistics
Kriging
Meteorology
Missing data
Modeling
Multilevel models
multivariate analysis
Other topics in atmospheric geophysics
Ozone
Parametric models
Pollution
prediction
Spatial models
title hierarchical approach to multivariate spatial modeling and prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=hierarchical%20approach%20to%20multivariate%20spatial%20modeling%20and%20prediction&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Royle,%20J.A&rft.date=1999-03-01&rft.volume=4&rft.issue=1&rft.spage=29&rft.epage=56&rft.pages=29-56&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.2307/1400420&rft_dat=%3Cjstor_cross%3E1400420%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1400420&rfr_iscdi=true