Rejection of a Single Outlier in Two- or Three-Way Layouts

Accurate bounds are presented for the fractiles of the maximum normed residual (which is often used to test for a single outlier) for two- and three-way layouts. It is shown that the second Bonferroni bound of the critical value, while not conservative, is an excellent approximation to the critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 1981-02, Vol.23 (1), p.65-70
Hauptverfasser: Galpin, Jacqueline S., Hawkins, Douglas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 65
container_title Technometrics
container_volume 23
creator Galpin, Jacqueline S.
Hawkins, Douglas M.
description Accurate bounds are presented for the fractiles of the maximum normed residual (which is often used to test for a single outlier) for two- and three-way layouts. It is shown that the second Bonferroni bound of the critical value, while not conservative, is an excellent approximation to the critical value, being much more accurate than the first Bonferroni upper bound. The third Bonferroni (upper) bound, which, although conservative, is expensive to calculate, agrees with the second bound to at least four decimal places for all factor combinations considered in this paper.
doi_str_mv 10.2307/1267977
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_1267977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1267977</jstor_id><sourcerecordid>1267977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c997-11dc89f1f1a8403c9fe3bc60027473a72f04d26d7673b2efcd432709a9a219ab3</originalsourceid><addsrcrecordid>eNp1z81KxDAUhuEsFBxH8RayEFxFT37IadzJ4B8UBrTgsqRpoim1kaSD9O5VZrauvs3DBy8hFxyuhQS84UKjQTwiKwAFjCPoE3JaygDApahwRW5f_ODdHNNEU6CWvsbpffR0u5vH6DONE22-E6Mp0-Yje8_e7EJru6TdXM7IcbBj8eeHXZPm4b7ZPLF6-_i8uauZMwYZ572rTOCB20qBdCZ42TkNIFChtCgCqF7oHjXKTvjgeiUFgrHGCm5sJ9fkan_rciol-9B-5fhp89JyaP8q20Plr7zcy6HMKf_LfgA3lk9t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rejection of a Single Outlier in Two- or Three-Way Layouts</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Galpin, Jacqueline S. ; Hawkins, Douglas M.</creator><creatorcontrib>Galpin, Jacqueline S. ; Hawkins, Douglas M.</creatorcontrib><description>Accurate bounds are presented for the fractiles of the maximum normed residual (which is often used to test for a single outlier) for two- and three-way layouts. It is shown that the second Bonferroni bound of the critical value, while not conservative, is an excellent approximation to the critical value, being much more accurate than the first Bonferroni upper bound. The third Bonferroni (upper) bound, which, although conservative, is expensive to calculate, agrees with the second bound to at least four decimal places for all factor combinations considered in this paper.</description><identifier>ISSN: 0040-1706</identifier><identifier>DOI: 10.2307/1267977</identifier><language>eng</language><publisher>The American Society for Quality Control and The American Statistical Association</publisher><subject>Critical values ; Outliers</subject><ispartof>Technometrics, 1981-02, Vol.23 (1), p.65-70</ispartof><rights>Copyright 1981 The American Statistical Association and the American Society for Quality Control</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c997-11dc89f1f1a8403c9fe3bc60027473a72f04d26d7673b2efcd432709a9a219ab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1267977$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1267977$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Galpin, Jacqueline S.</creatorcontrib><creatorcontrib>Hawkins, Douglas M.</creatorcontrib><title>Rejection of a Single Outlier in Two- or Three-Way Layouts</title><title>Technometrics</title><description>Accurate bounds are presented for the fractiles of the maximum normed residual (which is often used to test for a single outlier) for two- and three-way layouts. It is shown that the second Bonferroni bound of the critical value, while not conservative, is an excellent approximation to the critical value, being much more accurate than the first Bonferroni upper bound. The third Bonferroni (upper) bound, which, although conservative, is expensive to calculate, agrees with the second bound to at least four decimal places for all factor combinations considered in this paper.</description><subject>Critical values</subject><subject>Outliers</subject><issn>0040-1706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNp1z81KxDAUhuEsFBxH8RayEFxFT37IadzJ4B8UBrTgsqRpoim1kaSD9O5VZrauvs3DBy8hFxyuhQS84UKjQTwiKwAFjCPoE3JaygDApahwRW5f_ODdHNNEU6CWvsbpffR0u5vH6DONE22-E6Mp0-Yje8_e7EJru6TdXM7IcbBj8eeHXZPm4b7ZPLF6-_i8uauZMwYZ572rTOCB20qBdCZ42TkNIFChtCgCqF7oHjXKTvjgeiUFgrHGCm5sJ9fkan_rciol-9B-5fhp89JyaP8q20Plr7zcy6HMKf_LfgA3lk9t</recordid><startdate>19810201</startdate><enddate>19810201</enddate><creator>Galpin, Jacqueline S.</creator><creator>Hawkins, Douglas M.</creator><general>The American Society for Quality Control and The American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19810201</creationdate><title>Rejection of a Single Outlier in Two- or Three-Way Layouts</title><author>Galpin, Jacqueline S. ; Hawkins, Douglas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c997-11dc89f1f1a8403c9fe3bc60027473a72f04d26d7673b2efcd432709a9a219ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Critical values</topic><topic>Outliers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galpin, Jacqueline S.</creatorcontrib><creatorcontrib>Hawkins, Douglas M.</creatorcontrib><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galpin, Jacqueline S.</au><au>Hawkins, Douglas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rejection of a Single Outlier in Two- or Three-Way Layouts</atitle><jtitle>Technometrics</jtitle><date>1981-02-01</date><risdate>1981</risdate><volume>23</volume><issue>1</issue><spage>65</spage><epage>70</epage><pages>65-70</pages><issn>0040-1706</issn><abstract>Accurate bounds are presented for the fractiles of the maximum normed residual (which is often used to test for a single outlier) for two- and three-way layouts. It is shown that the second Bonferroni bound of the critical value, while not conservative, is an excellent approximation to the critical value, being much more accurate than the first Bonferroni upper bound. The third Bonferroni (upper) bound, which, although conservative, is expensive to calculate, agrees with the second bound to at least four decimal places for all factor combinations considered in this paper.</abstract><pub>The American Society for Quality Control and The American Statistical Association</pub><doi>10.2307/1267977</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 1981-02, Vol.23 (1), p.65-70
issn 0040-1706
language eng
recordid cdi_crossref_primary_10_2307_1267977
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Critical values
Outliers
title Rejection of a Single Outlier in Two- or Three-Way Layouts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rejection%20of%20a%20Single%20Outlier%20in%20Two-%20or%20Three-Way%20Layouts&rft.jtitle=Technometrics&rft.au=Galpin,%20Jacqueline%20S.&rft.date=1981-02-01&rft.volume=23&rft.issue=1&rft.spage=65&rft.epage=70&rft.pages=65-70&rft.issn=0040-1706&rft_id=info:doi/10.2307/1267977&rft_dat=%3Cjstor_cross%3E1267977%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1267977&rfr_iscdi=true