Performance Investigation of Adaptive Ant Colony Optimization with 2-Opt Method

An adaptive ant colony optimization with node clustering (AACO-NC) has been proposed as a method for solving the Traveling Salesman Problem (TSP). The AACO-NC first constructs a route and then improves the route by using a modified k-Opt method. However, the modified k-Opt method increases the compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Signal Processing 2024/07/01, Vol.28(4), pp.115-118
Hauptverfasser: Kotake, Nozomi, Shibutani, Rikuto, Nakajima, Kazuma, Matsuura, Takafumi, Kimura, Takayuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 4
container_start_page 115
container_title Journal of Signal Processing
container_volume 28
creator Kotake, Nozomi
Shibutani, Rikuto
Nakajima, Kazuma
Matsuura, Takafumi
Kimura, Takayuki
description An adaptive ant colony optimization with node clustering (AACO-NC) has been proposed as a method for solving the Traveling Salesman Problem (TSP). The AACO-NC first constructs a route and then improves the route by using a modified k-Opt method. However, the modified k-Opt method increases the computational complexity for searching neighborhood solutions. In this work, we investigate the performance of AACO-NC when applying the 2-Opt method instead of the modified k-Opt method to reduce the computational complexity.
doi_str_mv 10.2299/jsp.28.115
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2299_jsp_28_115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jsp_28_4_28_115_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1915-a979ba9b6ec3745a287f4128de65077678190296f23cfbcb046b893f555479cd3</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKsbf0HWwtQ8Jq-Fi1J8FCp1oeuQySRtSjspSajUX-_I1K7u5XD4FgeAe4wmhCj1uMn7CZETjNkFGGEpUYURppf9T2tScULRNbjJeYMQ54LREVh-uORj2pnOOjjvDi6XsDIlxA5GD6et2ZdwcHDaFTiL29gd4bInu_AzON-hrCGpegbfXVnH9hZcebPN7u50x-Dr5flz9lYtlq_z2XRRWawwq4wSqjGq4c5SUTNDpPA1JrJ1nCEhuJBYIaK4J9T6xjao5o1U1DPGaqFsS8fgYdi1KeacnNf7FHYmHTVG-i-F7lNoInWfopefBnmTi1m5s2pSCXbr_tX65J-5XZukXUd_AWqhZ8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance Investigation of Adaptive Ant Colony Optimization with 2-Opt Method</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kotake, Nozomi ; Shibutani, Rikuto ; Nakajima, Kazuma ; Matsuura, Takafumi ; Kimura, Takayuki</creator><creatorcontrib>Kotake, Nozomi ; Shibutani, Rikuto ; Nakajima, Kazuma ; Matsuura, Takafumi ; Kimura, Takayuki</creatorcontrib><description>An adaptive ant colony optimization with node clustering (AACO-NC) has been proposed as a method for solving the Traveling Salesman Problem (TSP). The AACO-NC first constructs a route and then improves the route by using a modified k-Opt method. However, the modified k-Opt method increases the computational complexity for searching neighborhood solutions. In this work, we investigate the performance of AACO-NC when applying the 2-Opt method instead of the modified k-Opt method to reduce the computational complexity.</description><identifier>ISSN: 1342-6230</identifier><identifier>EISSN: 1880-1013</identifier><identifier>DOI: 10.2299/jsp.28.115</identifier><language>eng</language><publisher>Research Institute of Signal Processing, Japan</publisher><ispartof>Journal of Signal Processing, 2024/07/01, Vol.28(4), pp.115-118</ispartof><rights>2024 Research Institute of Signal Processing, Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1915-a979ba9b6ec3745a287f4128de65077678190296f23cfbcb046b893f555479cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Kotake, Nozomi</creatorcontrib><creatorcontrib>Shibutani, Rikuto</creatorcontrib><creatorcontrib>Nakajima, Kazuma</creatorcontrib><creatorcontrib>Matsuura, Takafumi</creatorcontrib><creatorcontrib>Kimura, Takayuki</creatorcontrib><title>Performance Investigation of Adaptive Ant Colony Optimization with 2-Opt Method</title><title>Journal of Signal Processing</title><addtitle>Journal of Signal Processing</addtitle><description>An adaptive ant colony optimization with node clustering (AACO-NC) has been proposed as a method for solving the Traveling Salesman Problem (TSP). The AACO-NC first constructs a route and then improves the route by using a modified k-Opt method. However, the modified k-Opt method increases the computational complexity for searching neighborhood solutions. In this work, we investigate the performance of AACO-NC when applying the 2-Opt method instead of the modified k-Opt method to reduce the computational complexity.</description><issn>1342-6230</issn><issn>1880-1013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEURoMoWKsbf0HWwtQ8Jq-Fi1J8FCp1oeuQySRtSjspSajUX-_I1K7u5XD4FgeAe4wmhCj1uMn7CZETjNkFGGEpUYURppf9T2tScULRNbjJeYMQ54LREVh-uORj2pnOOjjvDi6XsDIlxA5GD6et2ZdwcHDaFTiL29gd4bInu_AzON-hrCGpegbfXVnH9hZcebPN7u50x-Dr5flz9lYtlq_z2XRRWawwq4wSqjGq4c5SUTNDpPA1JrJ1nCEhuJBYIaK4J9T6xjao5o1U1DPGaqFsS8fgYdi1KeacnNf7FHYmHTVG-i-F7lNoInWfopefBnmTi1m5s2pSCXbr_tX65J-5XZukXUd_AWqhZ8k</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kotake, Nozomi</creator><creator>Shibutani, Rikuto</creator><creator>Nakajima, Kazuma</creator><creator>Matsuura, Takafumi</creator><creator>Kimura, Takayuki</creator><general>Research Institute of Signal Processing, Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Performance Investigation of Adaptive Ant Colony Optimization with 2-Opt Method</title><author>Kotake, Nozomi ; Shibutani, Rikuto ; Nakajima, Kazuma ; Matsuura, Takafumi ; Kimura, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1915-a979ba9b6ec3745a287f4128de65077678190296f23cfbcb046b893f555479cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotake, Nozomi</creatorcontrib><creatorcontrib>Shibutani, Rikuto</creatorcontrib><creatorcontrib>Nakajima, Kazuma</creatorcontrib><creatorcontrib>Matsuura, Takafumi</creatorcontrib><creatorcontrib>Kimura, Takayuki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Signal Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotake, Nozomi</au><au>Shibutani, Rikuto</au><au>Nakajima, Kazuma</au><au>Matsuura, Takafumi</au><au>Kimura, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Investigation of Adaptive Ant Colony Optimization with 2-Opt Method</atitle><jtitle>Journal of Signal Processing</jtitle><addtitle>Journal of Signal Processing</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>115</spage><epage>118</epage><pages>115-118</pages><issn>1342-6230</issn><eissn>1880-1013</eissn><abstract>An adaptive ant colony optimization with node clustering (AACO-NC) has been proposed as a method for solving the Traveling Salesman Problem (TSP). The AACO-NC first constructs a route and then improves the route by using a modified k-Opt method. However, the modified k-Opt method increases the computational complexity for searching neighborhood solutions. In this work, we investigate the performance of AACO-NC when applying the 2-Opt method instead of the modified k-Opt method to reduce the computational complexity.</abstract><pub>Research Institute of Signal Processing, Japan</pub><doi>10.2299/jsp.28.115</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-6230
ispartof Journal of Signal Processing, 2024/07/01, Vol.28(4), pp.115-118
issn 1342-6230
1880-1013
language eng
recordid cdi_crossref_primary_10_2299_jsp_28_115
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Performance Investigation of Adaptive Ant Colony Optimization with 2-Opt Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Investigation%20of%20Adaptive%20Ant%20Colony%20Optimization%20with%202-Opt%20Method&rft.jtitle=Journal%20of%20Signal%20Processing&rft.au=Kotake,%20Nozomi&rft.date=2024-07-01&rft.volume=28&rft.issue=4&rft.spage=115&rft.epage=118&rft.pages=115-118&rft.issn=1342-6230&rft.eissn=1880-1013&rft_id=info:doi/10.2299/jsp.28.115&rft_dat=%3Cjstage_cross%3Earticle_jsp_28_4_28_115_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true