Numerical solution for stochastic heat equation with Neumann boundary conditions

In this article, we propose a new technique based on 2-D shifted Legendre poly?nomials through the operational matrix integration method to find the numeri?cal solution of the stochastic heat equation with Neumann boundary conditions. For the proposed technique, the convergence criteria and the erro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2023, Vol.27 (Spec. issue 1), p.57-66
Hauptverfasser: Raja Balachandar, S., Uma, D., Jafari, H., Venkatesh, S.G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue Spec. issue 1
container_start_page 57
container_title Thermal science
container_volume 27
creator Raja Balachandar, S.
Uma, D.
Jafari, H.
Venkatesh, S.G.
description In this article, we propose a new technique based on 2-D shifted Legendre poly?nomials through the operational matrix integration method to find the numeri?cal solution of the stochastic heat equation with Neumann boundary conditions. For the proposed technique, the convergence criteria and the error estima?tion are also discussed in detail. This new technique is tested with two exam?ples, and it is observed that this method is very easy to handle such problems as the initial and boundary conditions are taken care of automatically. Also, the time complexity of the proposed approach is discussed and it is proved to be O[k(N + 1)4] where N denotes the degree of the approximate function and k is the number of simulations. This method is very convenient and efficient for solving other partial differential equations.
doi_str_mv 10.2298/TSCI23S1057R
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_TSCI23S1057R</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_TSCI23S1057R</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-dcad7773eb1d814758aaa1825d81dc3e322c7c791967f632801533d28c91fc463</originalsourceid><addsrcrecordid>eNpNkM1KxDAUhYMoWEd3PkAewGqS2ybpUoo_A8MozrgumZuUVtpGkxTx7Z1RF64Ohw8Oh4-QS86uhaj0zXZTLwVsOCvVyxHJBECRKy7hmGQMyiKvNMhTchbjG2NSaq0y8ryeRxd6NAONfphT7yfa-kBj8tiZmHqknTOJuo_Z_MDPPnV07ebRTBPd-XmyJnxR9JPtDzyek5PWDNFd_OWCvN7fbevHfPX0sKxvVzkKYCm3aKxSCtyOW80LVWpjDNei3DeL4EAIVKgqXknVShCa8RLACo0Vb7GQsCBXv7sYfIzBtc176Mf9l4az5mCj-W8DvgHqCVPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical solution for stochastic heat equation with Neumann boundary conditions</title><source>Full-Text Journals in Chemistry (Open access)</source><source>EZB Electronic Journals Library</source><creator>Raja Balachandar, S. ; Uma, D. ; Jafari, H. ; Venkatesh, S.G.</creator><creatorcontrib>Raja Balachandar, S. ; Uma, D. ; Jafari, H. ; Venkatesh, S.G.</creatorcontrib><description>In this article, we propose a new technique based on 2-D shifted Legendre poly?nomials through the operational matrix integration method to find the numeri?cal solution of the stochastic heat equation with Neumann boundary conditions. For the proposed technique, the convergence criteria and the error estima?tion are also discussed in detail. This new technique is tested with two exam?ples, and it is observed that this method is very easy to handle such problems as the initial and boundary conditions are taken care of automatically. Also, the time complexity of the proposed approach is discussed and it is proved to be O[k(N + 1)4] where N denotes the degree of the approximate function and k is the number of simulations. This method is very convenient and efficient for solving other partial differential equations.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI23S1057R</identifier><language>eng</language><ispartof>Thermal science, 2023, Vol.27 (Spec. issue 1), p.57-66</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-dcad7773eb1d814758aaa1825d81dc3e322c7c791967f632801533d28c91fc463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Raja Balachandar, S.</creatorcontrib><creatorcontrib>Uma, D.</creatorcontrib><creatorcontrib>Jafari, H.</creatorcontrib><creatorcontrib>Venkatesh, S.G.</creatorcontrib><title>Numerical solution for stochastic heat equation with Neumann boundary conditions</title><title>Thermal science</title><description>In this article, we propose a new technique based on 2-D shifted Legendre poly?nomials through the operational matrix integration method to find the numeri?cal solution of the stochastic heat equation with Neumann boundary conditions. For the proposed technique, the convergence criteria and the error estima?tion are also discussed in detail. This new technique is tested with two exam?ples, and it is observed that this method is very easy to handle such problems as the initial and boundary conditions are taken care of automatically. Also, the time complexity of the proposed approach is discussed and it is proved to be O[k(N + 1)4] where N denotes the degree of the approximate function and k is the number of simulations. This method is very convenient and efficient for solving other partial differential equations.</description><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KxDAUhYMoWEd3PkAewGqS2ybpUoo_A8MozrgumZuUVtpGkxTx7Z1RF64Ohw8Oh4-QS86uhaj0zXZTLwVsOCvVyxHJBECRKy7hmGQMyiKvNMhTchbjG2NSaq0y8ryeRxd6NAONfphT7yfa-kBj8tiZmHqknTOJuo_Z_MDPPnV07ebRTBPd-XmyJnxR9JPtDzyek5PWDNFd_OWCvN7fbevHfPX0sKxvVzkKYCm3aKxSCtyOW80LVWpjDNei3DeL4EAIVKgqXknVShCa8RLACo0Vb7GQsCBXv7sYfIzBtc176Mf9l4az5mCj-W8DvgHqCVPM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Raja Balachandar, S.</creator><creator>Uma, D.</creator><creator>Jafari, H.</creator><creator>Venkatesh, S.G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Numerical solution for stochastic heat equation with Neumann boundary conditions</title><author>Raja Balachandar, S. ; Uma, D. ; Jafari, H. ; Venkatesh, S.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-dcad7773eb1d814758aaa1825d81dc3e322c7c791967f632801533d28c91fc463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raja Balachandar, S.</creatorcontrib><creatorcontrib>Uma, D.</creatorcontrib><creatorcontrib>Jafari, H.</creatorcontrib><creatorcontrib>Venkatesh, S.G.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raja Balachandar, S.</au><au>Uma, D.</au><au>Jafari, H.</au><au>Venkatesh, S.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution for stochastic heat equation with Neumann boundary conditions</atitle><jtitle>Thermal science</jtitle><date>2023</date><risdate>2023</risdate><volume>27</volume><issue>Spec. issue 1</issue><spage>57</spage><epage>66</epage><pages>57-66</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In this article, we propose a new technique based on 2-D shifted Legendre poly?nomials through the operational matrix integration method to find the numeri?cal solution of the stochastic heat equation with Neumann boundary conditions. For the proposed technique, the convergence criteria and the error estima?tion are also discussed in detail. This new technique is tested with two exam?ples, and it is observed that this method is very easy to handle such problems as the initial and boundary conditions are taken care of automatically. Also, the time complexity of the proposed approach is discussed and it is proved to be O[k(N + 1)4] where N denotes the degree of the approximate function and k is the number of simulations. This method is very convenient and efficient for solving other partial differential equations.</abstract><doi>10.2298/TSCI23S1057R</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2023, Vol.27 (Spec. issue 1), p.57-66
issn 0354-9836
2334-7163
language eng
recordid cdi_crossref_primary_10_2298_TSCI23S1057R
source Full-Text Journals in Chemistry (Open access); EZB Electronic Journals Library
title Numerical solution for stochastic heat equation with Neumann boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20for%20stochastic%20heat%20equation%20with%20Neumann%20boundary%20conditions&rft.jtitle=Thermal%20science&rft.au=Raja%20Balachandar,%20S.&rft.date=2023&rft.volume=27&rft.issue=Spec.%20issue%201&rft.spage=57&rft.epage=66&rft.pages=57-66&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI23S1057R&rft_dat=%3Ccrossref%3E10_2298_TSCI23S1057R%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true