Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions
This study contains an algorithmic solution of the Sine Gordon equation in three space and time dimensional problems. For discretization, the central difference formula is used for the time variable. In contrast, space variable x, y, and z are discretized using the non-polynominal cubic spline funct...
Gespeichert in:
Veröffentlicht in: | Thermal science 2023, Vol.27 (4 Part B), p.3155-3170 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3170 |
---|---|
container_issue | 4 Part B |
container_start_page | 3155 |
container_title | Thermal science |
container_volume | 27 |
creator | Sattar, Rabia Ahmad, Muhammad Pervaiz, Anjum Ahmed, Nauman Akgul, Ali Abdullaev, Sherzod Alshaikh, Noorhan Wannan, Rania Asad, Jihad |
description | This study contains an algorithmic solution of the Sine Gordon equation in
three space and time dimensional problems. For discretization, the central
difference formula is used for the time variable. In contrast, space
variable x, y, and z are discretized using the non-polynominal cubic spline
functions for each. The proposed scheme brings the accuracy of order O(h2 +
k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The
paper also discussed the truncation error of the proposed method and
obtained the stability analysis. Numerical problems are elucidated by this
method and compared to results taken from the literature. |
doi_str_mv | 10.2298/TSCI2304155S |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_TSCI2304155S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_TSCI2304155S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-a67b9cb412722de163633e01e49dcda1f6a547070ab6e0de008772b80df7d1e73</originalsourceid><addsrcrecordid>eNpNkEFPhDAUhBujibh68wf0ruhrCy0cDdHdTTZ6YD14IoU-Yg20SOGw_16IHjxNZiaZfBlCbhk8cJ5nj8ey2HMBCUvT8oxEXIgkVkyKcxKBSJM4z4S8JFchfAFImWUqIh-v3sWD707O91Z3tJlr29AwdNYh7XH69IbOAQ2dPG31YntartXWj8Y7it-znqx3gVpHxR2jxvbowppck4tWdwFv_nRD3l-ej8UuPrxt98XTIW4W1CnWUtV5UyeMK84NLrRSCASGSW4ao1krdZooUKBriWAQIFOK1xmYVhmGSmzI_e9uM_oQRmyrYbS9Hk8Vg2q9pfp_i_gBQD5Vzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sattar, Rabia ; Ahmad, Muhammad ; Pervaiz, Anjum ; Ahmed, Nauman ; Akgul, Ali ; Abdullaev, Sherzod ; Alshaikh, Noorhan ; Wannan, Rania ; Asad, Jihad</creator><creatorcontrib>Sattar, Rabia ; Ahmad, Muhammad ; Pervaiz, Anjum ; Ahmed, Nauman ; Akgul, Ali ; Abdullaev, Sherzod ; Alshaikh, Noorhan ; Wannan, Rania ; Asad, Jihad</creatorcontrib><description>This study contains an algorithmic solution of the Sine Gordon equation in
three space and time dimensional problems. For discretization, the central
difference formula is used for the time variable. In contrast, space
variable x, y, and z are discretized using the non-polynominal cubic spline
functions for each. The proposed scheme brings the accuracy of order O(h2 +
k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The
paper also discussed the truncation error of the proposed method and
obtained the stability analysis. Numerical problems are elucidated by this
method and compared to results taken from the literature.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI2304155S</identifier><language>eng</language><ispartof>Thermal science, 2023, Vol.27 (4 Part B), p.3155-3170</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-a67b9cb412722de163633e01e49dcda1f6a547070ab6e0de008772b80df7d1e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sattar, Rabia</creatorcontrib><creatorcontrib>Ahmad, Muhammad</creatorcontrib><creatorcontrib>Pervaiz, Anjum</creatorcontrib><creatorcontrib>Ahmed, Nauman</creatorcontrib><creatorcontrib>Akgul, Ali</creatorcontrib><creatorcontrib>Abdullaev, Sherzod</creatorcontrib><creatorcontrib>Alshaikh, Noorhan</creatorcontrib><creatorcontrib>Wannan, Rania</creatorcontrib><creatorcontrib>Asad, Jihad</creatorcontrib><title>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</title><title>Thermal science</title><description>This study contains an algorithmic solution of the Sine Gordon equation in
three space and time dimensional problems. For discretization, the central
difference formula is used for the time variable. In contrast, space
variable x, y, and z are discretized using the non-polynominal cubic spline
functions for each. The proposed scheme brings the accuracy of order O(h2 +
k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The
paper also discussed the truncation error of the proposed method and
obtained the stability analysis. Numerical problems are elucidated by this
method and compared to results taken from the literature.</description><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPhDAUhBujibh68wf0ruhrCy0cDdHdTTZ6YD14IoU-Yg20SOGw_16IHjxNZiaZfBlCbhk8cJ5nj8ey2HMBCUvT8oxEXIgkVkyKcxKBSJM4z4S8JFchfAFImWUqIh-v3sWD707O91Z3tJlr29AwdNYh7XH69IbOAQ2dPG31YntartXWj8Y7it-znqx3gVpHxR2jxvbowppck4tWdwFv_nRD3l-ej8UuPrxt98XTIW4W1CnWUtV5UyeMK84NLrRSCASGSW4ao1krdZooUKBriWAQIFOK1xmYVhmGSmzI_e9uM_oQRmyrYbS9Hk8Vg2q9pfp_i_gBQD5Vzg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Sattar, Rabia</creator><creator>Ahmad, Muhammad</creator><creator>Pervaiz, Anjum</creator><creator>Ahmed, Nauman</creator><creator>Akgul, Ali</creator><creator>Abdullaev, Sherzod</creator><creator>Alshaikh, Noorhan</creator><creator>Wannan, Rania</creator><creator>Asad, Jihad</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</title><author>Sattar, Rabia ; Ahmad, Muhammad ; Pervaiz, Anjum ; Ahmed, Nauman ; Akgul, Ali ; Abdullaev, Sherzod ; Alshaikh, Noorhan ; Wannan, Rania ; Asad, Jihad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-a67b9cb412722de163633e01e49dcda1f6a547070ab6e0de008772b80df7d1e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattar, Rabia</creatorcontrib><creatorcontrib>Ahmad, Muhammad</creatorcontrib><creatorcontrib>Pervaiz, Anjum</creatorcontrib><creatorcontrib>Ahmed, Nauman</creatorcontrib><creatorcontrib>Akgul, Ali</creatorcontrib><creatorcontrib>Abdullaev, Sherzod</creatorcontrib><creatorcontrib>Alshaikh, Noorhan</creatorcontrib><creatorcontrib>Wannan, Rania</creatorcontrib><creatorcontrib>Asad, Jihad</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattar, Rabia</au><au>Ahmad, Muhammad</au><au>Pervaiz, Anjum</au><au>Ahmed, Nauman</au><au>Akgul, Ali</au><au>Abdullaev, Sherzod</au><au>Alshaikh, Noorhan</au><au>Wannan, Rania</au><au>Asad, Jihad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</atitle><jtitle>Thermal science</jtitle><date>2023</date><risdate>2023</risdate><volume>27</volume><issue>4 Part B</issue><spage>3155</spage><epage>3170</epage><pages>3155-3170</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>This study contains an algorithmic solution of the Sine Gordon equation in
three space and time dimensional problems. For discretization, the central
difference formula is used for the time variable. In contrast, space
variable x, y, and z are discretized using the non-polynominal cubic spline
functions for each. The proposed scheme brings the accuracy of order O(h2 +
k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The
paper also discussed the truncation error of the proposed method and
obtained the stability analysis. Numerical problems are elucidated by this
method and compared to results taken from the literature.</abstract><doi>10.2298/TSCI2304155S</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2023, Vol.27 (4 Part B), p.3155-3170 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_crossref_primary_10_2298_TSCI2304155S |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
title | Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-polynomial%20cubic%20spline%20method%20used%20to%20fathom%20Sine%20Gordon%20equations%20in%203+1%20dimensions&rft.jtitle=Thermal%20science&rft.au=Sattar,%20Rabia&rft.date=2023&rft.volume=27&rft.issue=4%20Part%20B&rft.spage=3155&rft.epage=3170&rft.pages=3155-3170&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI2304155S&rft_dat=%3Ccrossref%3E10_2298_TSCI2304155S%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |