Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions

This study contains an algorithmic solution of the Sine Gordon equation in three space and time dimensional problems. For discretization, the central difference formula is used for the time variable. In contrast, space variable x, y, and z are discretized using the non-polynominal cubic spline funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2023, Vol.27 (4 Part B), p.3155-3170
Hauptverfasser: Sattar, Rabia, Ahmad, Muhammad, Pervaiz, Anjum, Ahmed, Nauman, Akgul, Ali, Abdullaev, Sherzod, Alshaikh, Noorhan, Wannan, Rania, Asad, Jihad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3170
container_issue 4 Part B
container_start_page 3155
container_title Thermal science
container_volume 27
creator Sattar, Rabia
Ahmad, Muhammad
Pervaiz, Anjum
Ahmed, Nauman
Akgul, Ali
Abdullaev, Sherzod
Alshaikh, Noorhan
Wannan, Rania
Asad, Jihad
description This study contains an algorithmic solution of the Sine Gordon equation in three space and time dimensional problems. For discretization, the central difference formula is used for the time variable. In contrast, space variable x, y, and z are discretized using the non-polynominal cubic spline functions for each. The proposed scheme brings the accuracy of order O(h2 + k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The paper also discussed the truncation error of the proposed method and obtained the stability analysis. Numerical problems are elucidated by this method and compared to results taken from the literature.
doi_str_mv 10.2298/TSCI2304155S
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_TSCI2304155S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_TSCI2304155S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-a67b9cb412722de163633e01e49dcda1f6a547070ab6e0de008772b80df7d1e73</originalsourceid><addsrcrecordid>eNpNkEFPhDAUhBujibh68wf0ruhrCy0cDdHdTTZ6YD14IoU-Yg20SOGw_16IHjxNZiaZfBlCbhk8cJ5nj8ey2HMBCUvT8oxEXIgkVkyKcxKBSJM4z4S8JFchfAFImWUqIh-v3sWD707O91Z3tJlr29AwdNYh7XH69IbOAQ2dPG31YntartXWj8Y7it-znqx3gVpHxR2jxvbowppck4tWdwFv_nRD3l-ej8UuPrxt98XTIW4W1CnWUtV5UyeMK84NLrRSCASGSW4ao1krdZooUKBriWAQIFOK1xmYVhmGSmzI_e9uM_oQRmyrYbS9Hk8Vg2q9pfp_i_gBQD5Vzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sattar, Rabia ; Ahmad, Muhammad ; Pervaiz, Anjum ; Ahmed, Nauman ; Akgul, Ali ; Abdullaev, Sherzod ; Alshaikh, Noorhan ; Wannan, Rania ; Asad, Jihad</creator><creatorcontrib>Sattar, Rabia ; Ahmad, Muhammad ; Pervaiz, Anjum ; Ahmed, Nauman ; Akgul, Ali ; Abdullaev, Sherzod ; Alshaikh, Noorhan ; Wannan, Rania ; Asad, Jihad</creatorcontrib><description>This study contains an algorithmic solution of the Sine Gordon equation in three space and time dimensional problems. For discretization, the central difference formula is used for the time variable. In contrast, space variable x, y, and z are discretized using the non-polynominal cubic spline functions for each. The proposed scheme brings the accuracy of order O(h2 + k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The paper also discussed the truncation error of the proposed method and obtained the stability analysis. Numerical problems are elucidated by this method and compared to results taken from the literature.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI2304155S</identifier><language>eng</language><ispartof>Thermal science, 2023, Vol.27 (4 Part B), p.3155-3170</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-a67b9cb412722de163633e01e49dcda1f6a547070ab6e0de008772b80df7d1e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sattar, Rabia</creatorcontrib><creatorcontrib>Ahmad, Muhammad</creatorcontrib><creatorcontrib>Pervaiz, Anjum</creatorcontrib><creatorcontrib>Ahmed, Nauman</creatorcontrib><creatorcontrib>Akgul, Ali</creatorcontrib><creatorcontrib>Abdullaev, Sherzod</creatorcontrib><creatorcontrib>Alshaikh, Noorhan</creatorcontrib><creatorcontrib>Wannan, Rania</creatorcontrib><creatorcontrib>Asad, Jihad</creatorcontrib><title>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</title><title>Thermal science</title><description>This study contains an algorithmic solution of the Sine Gordon equation in three space and time dimensional problems. For discretization, the central difference formula is used for the time variable. In contrast, space variable x, y, and z are discretized using the non-polynominal cubic spline functions for each. The proposed scheme brings the accuracy of order O(h2 + k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The paper also discussed the truncation error of the proposed method and obtained the stability analysis. Numerical problems are elucidated by this method and compared to results taken from the literature.</description><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPhDAUhBujibh68wf0ruhrCy0cDdHdTTZ6YD14IoU-Yg20SOGw_16IHjxNZiaZfBlCbhk8cJ5nj8ey2HMBCUvT8oxEXIgkVkyKcxKBSJM4z4S8JFchfAFImWUqIh-v3sWD707O91Z3tJlr29AwdNYh7XH69IbOAQ2dPG31YntartXWj8Y7it-znqx3gVpHxR2jxvbowppck4tWdwFv_nRD3l-ej8UuPrxt98XTIW4W1CnWUtV5UyeMK84NLrRSCASGSW4ao1krdZooUKBriWAQIFOK1xmYVhmGSmzI_e9uM_oQRmyrYbS9Hk8Vg2q9pfp_i_gBQD5Vzg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Sattar, Rabia</creator><creator>Ahmad, Muhammad</creator><creator>Pervaiz, Anjum</creator><creator>Ahmed, Nauman</creator><creator>Akgul, Ali</creator><creator>Abdullaev, Sherzod</creator><creator>Alshaikh, Noorhan</creator><creator>Wannan, Rania</creator><creator>Asad, Jihad</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</title><author>Sattar, Rabia ; Ahmad, Muhammad ; Pervaiz, Anjum ; Ahmed, Nauman ; Akgul, Ali ; Abdullaev, Sherzod ; Alshaikh, Noorhan ; Wannan, Rania ; Asad, Jihad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-a67b9cb412722de163633e01e49dcda1f6a547070ab6e0de008772b80df7d1e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattar, Rabia</creatorcontrib><creatorcontrib>Ahmad, Muhammad</creatorcontrib><creatorcontrib>Pervaiz, Anjum</creatorcontrib><creatorcontrib>Ahmed, Nauman</creatorcontrib><creatorcontrib>Akgul, Ali</creatorcontrib><creatorcontrib>Abdullaev, Sherzod</creatorcontrib><creatorcontrib>Alshaikh, Noorhan</creatorcontrib><creatorcontrib>Wannan, Rania</creatorcontrib><creatorcontrib>Asad, Jihad</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattar, Rabia</au><au>Ahmad, Muhammad</au><au>Pervaiz, Anjum</au><au>Ahmed, Nauman</au><au>Akgul, Ali</au><au>Abdullaev, Sherzod</au><au>Alshaikh, Noorhan</au><au>Wannan, Rania</au><au>Asad, Jihad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions</atitle><jtitle>Thermal science</jtitle><date>2023</date><risdate>2023</risdate><volume>27</volume><issue>4 Part B</issue><spage>3155</spage><epage>3170</epage><pages>3155-3170</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>This study contains an algorithmic solution of the Sine Gordon equation in three space and time dimensional problems. For discretization, the central difference formula is used for the time variable. In contrast, space variable x, y, and z are discretized using the non-polynominal cubic spline functions for each. The proposed scheme brings the accuracy of order O(h2 + k2 + ?2 + ?2h2 + ?2k2 + ?2?2) by electing suitable parametric values. The paper also discussed the truncation error of the proposed method and obtained the stability analysis. Numerical problems are elucidated by this method and compared to results taken from the literature.</abstract><doi>10.2298/TSCI2304155S</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2023, Vol.27 (4 Part B), p.3155-3170
issn 0354-9836
2334-7163
language eng
recordid cdi_crossref_primary_10_2298_TSCI2304155S
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
title Non-polynomial cubic spline method used to fathom Sine Gordon equations in 3+1 dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-polynomial%20cubic%20spline%20method%20used%20to%20fathom%20Sine%20Gordon%20equations%20in%203+1%20dimensions&rft.jtitle=Thermal%20science&rft.au=Sattar,%20Rabia&rft.date=2023&rft.volume=27&rft.issue=4%20Part%20B&rft.spage=3155&rft.epage=3170&rft.pages=3155-3170&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI2304155S&rft_dat=%3Ccrossref%3E10_2298_TSCI2304155S%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true