Wong-Zakai method for stochastic differential equations in engineering
In this paper, Wong-Zakai approximation methods are presented for some stochastic differential equations in engineering sciences. Wong-Zakai approximate solutions of the equations are analyzed and the numerical results are compared with results from popular approximation schemes for stochastic diffe...
Gespeichert in:
Veröffentlicht in: | Thermal science 2021, Vol.25 (Spec. issue 1), p.131-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | Spec. issue 1 |
container_start_page | 131 |
container_title | Thermal science |
container_volume | 25 |
creator | Sengul, Suleyman Bekiryazici, Zafer Merdan, Mehmet |
description | In this paper, Wong-Zakai approximation methods are presented for some stochastic differential equations in engineering sciences. Wong-Zakai approximate solutions of the equations are analyzed and the numerical results are compared with results from popular approximation schemes for stochastic differential equations such as Euler-Maruyama and Milstein methods. Several differential equations from engineering problems containing stochastic noise are investigated as numerical examples. Results show that Wong-Zakai method is a reliable tool for studying stochastic differential equations and can be used as an alternative for the known approximation techniques for stochastic models. |
doi_str_mv | 10.2298/TSCI200528014S |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_TSCI200528014S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_TSCI200528014S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-58804d2a43bf7cac79126ce03e41f7fd1f7b455cfdf41b74340d9cb04d1ea4a13</originalsourceid><addsrcrecordid>eNpVkL1OwzAYRS0EEqGwMvsFXPyX2BlRRaFSJYYWIbFEjv05NbQ22Gbg7SmCheXc6dzhIHTN6JzzXt9sN4sVp7TlmjK5OUENF0ISxTpxihoqWkl6LbpzdFHKK6Vdp7Vq0PI5xYm8mDcT8AHqLjnsU8alJrszpQaLXfAeMsQazB7Dx6epIcWCQ8QQpxABcojTJTrzZl_g6m9n6Gl5t108kPXj_WpxuyaWq76SVmsqHTdSjF5ZY1XPeGeBCpDMK--OGGXbWu-8ZKOSQlLX2_HoMDDSMDFD899fm1MpGfzwnsPB5K-B0eGnwvC_gvgG6HhRLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wong-Zakai method for stochastic differential equations in engineering</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sengul, Suleyman ; Bekiryazici, Zafer ; Merdan, Mehmet</creator><creatorcontrib>Sengul, Suleyman ; Bekiryazici, Zafer ; Merdan, Mehmet</creatorcontrib><description>In this paper, Wong-Zakai approximation methods are presented for some stochastic differential equations in engineering sciences. Wong-Zakai approximate solutions of the equations are analyzed and the numerical results are compared with results from popular approximation schemes for stochastic differential equations such as Euler-Maruyama and Milstein methods. Several differential equations from engineering problems containing stochastic noise are investigated as numerical examples. Results show that Wong-Zakai method is a reliable tool for studying stochastic differential equations and can be used as an alternative for the known approximation techniques for stochastic models.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI200528014S</identifier><language>eng</language><ispartof>Thermal science, 2021, Vol.25 (Spec. issue 1), p.131-142</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-58804d2a43bf7cac79126ce03e41f7fd1f7b455cfdf41b74340d9cb04d1ea4a13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Sengul, Suleyman</creatorcontrib><creatorcontrib>Bekiryazici, Zafer</creatorcontrib><creatorcontrib>Merdan, Mehmet</creatorcontrib><title>Wong-Zakai method for stochastic differential equations in engineering</title><title>Thermal science</title><description>In this paper, Wong-Zakai approximation methods are presented for some stochastic differential equations in engineering sciences. Wong-Zakai approximate solutions of the equations are analyzed and the numerical results are compared with results from popular approximation schemes for stochastic differential equations such as Euler-Maruyama and Milstein methods. Several differential equations from engineering problems containing stochastic noise are investigated as numerical examples. Results show that Wong-Zakai method is a reliable tool for studying stochastic differential equations and can be used as an alternative for the known approximation techniques for stochastic models.</description><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkL1OwzAYRS0EEqGwMvsFXPyX2BlRRaFSJYYWIbFEjv05NbQ22Gbg7SmCheXc6dzhIHTN6JzzXt9sN4sVp7TlmjK5OUENF0ISxTpxihoqWkl6LbpzdFHKK6Vdp7Vq0PI5xYm8mDcT8AHqLjnsU8alJrszpQaLXfAeMsQazB7Dx6epIcWCQ8QQpxABcojTJTrzZl_g6m9n6Gl5t108kPXj_WpxuyaWq76SVmsqHTdSjF5ZY1XPeGeBCpDMK--OGGXbWu-8ZKOSQlLX2_HoMDDSMDFD899fm1MpGfzwnsPB5K-B0eGnwvC_gvgG6HhRLA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sengul, Suleyman</creator><creator>Bekiryazici, Zafer</creator><creator>Merdan, Mehmet</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Wong-Zakai method for stochastic differential equations in engineering</title><author>Sengul, Suleyman ; Bekiryazici, Zafer ; Merdan, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-58804d2a43bf7cac79126ce03e41f7fd1f7b455cfdf41b74340d9cb04d1ea4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengul, Suleyman</creatorcontrib><creatorcontrib>Bekiryazici, Zafer</creatorcontrib><creatorcontrib>Merdan, Mehmet</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengul, Suleyman</au><au>Bekiryazici, Zafer</au><au>Merdan, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wong-Zakai method for stochastic differential equations in engineering</atitle><jtitle>Thermal science</jtitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issue>Spec. issue 1</issue><spage>131</spage><epage>142</epage><pages>131-142</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>In this paper, Wong-Zakai approximation methods are presented for some stochastic differential equations in engineering sciences. Wong-Zakai approximate solutions of the equations are analyzed and the numerical results are compared with results from popular approximation schemes for stochastic differential equations such as Euler-Maruyama and Milstein methods. Several differential equations from engineering problems containing stochastic noise are investigated as numerical examples. Results show that Wong-Zakai method is a reliable tool for studying stochastic differential equations and can be used as an alternative for the known approximation techniques for stochastic models.</abstract><doi>10.2298/TSCI200528014S</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2021, Vol.25 (Spec. issue 1), p.131-142 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_crossref_primary_10_2298_TSCI200528014S |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
title | Wong-Zakai method for stochastic differential equations in engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wong-Zakai%20method%20for%20stochastic%20differential%20equations%20in%20engineering&rft.jtitle=Thermal%20science&rft.au=Sengul,%20Suleyman&rft.date=2021&rft.volume=25&rft.issue=Spec.%20issue%201&rft.spage=131&rft.epage=142&rft.pages=131-142&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI200528014S&rft_dat=%3Ccrossref%3E10_2298_TSCI200528014S%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |