Finite difference approximation for parabolic interface problem with time-dependent coefficients
The convergence of difference scheme for two-dimensional initial boundary value problem for the heat equation with concentrated capacity and time-dependent coefficients of the space derivatives, is considered. An estimate of the rate of convergence in a special discrete W~12,1/2 Sobolev norm, compat...
Gespeichert in:
Veröffentlicht in: | Publications de l'Institut mathématique (Belgrade) 2016, Vol.99 (113), p.67-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 113 |
container_start_page | 67 |
container_title | Publications de l'Institut mathématique (Belgrade) |
container_volume | 99 |
creator | Sredojevic, Bratislav Bojovic, Dejan |
description | The convergence of difference scheme for two-dimensional initial boundary
value problem for the heat equation with concentrated capacity and
time-dependent coefficients of the space derivatives, is considered. An
estimate of the rate of convergence in a special discrete W~12,1/2 Sobolev
norm, compatible with the smoothness of the coefficients and solution, is
proved. |
doi_str_mv | 10.2298/PIM1613067S |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_PIM1613067S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_PIM1613067S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-29961773f9dc805a3e8e941e3a33b8f58ac8451e16a4688abdbfcc6abdbb11773</originalsourceid><addsrcrecordid>eNpNUEtLxDAYDKJgXT35B3KXaB5tmh5lcd2FFQX1XJP0C0a2SUkC6r-3RQ-eZmAeMIPQJaPXnHfq5mn3wCQTVLbPR6hiilPS1rQ5RhUVDSWzwk_RWc4flNK6pbJCbxsffAE8eOcgQbCA9TSl-OVHXXwM2MWEJ520iQdvsQ8FktOza_aYA4z405d3XPwIZIAJwgChYBvBOW_9zPM5OnH6kOHiD1fodXP3st6S_eP9bn27J5ZzVQjvOsnaVrhusIo2WoCCrmYgtBBGuUZpq-qGAZO6lkppMxhnrVzQsCW4Qle_vTbFnBO4fkrzhvTdM9ov5_T_zhE_cZdZ1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite difference approximation for parabolic interface problem with time-dependent coefficients</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sredojevic, Bratislav ; Bojovic, Dejan</creator><creatorcontrib>Sredojevic, Bratislav ; Bojovic, Dejan</creatorcontrib><description>The convergence of difference scheme for two-dimensional initial boundary
value problem for the heat equation with concentrated capacity and
time-dependent coefficients of the space derivatives, is considered. An
estimate of the rate of convergence in a special discrete W~12,1/2 Sobolev
norm, compatible with the smoothness of the coefficients and solution, is
proved.</description><identifier>ISSN: 0350-1302</identifier><identifier>EISSN: 1820-7405</identifier><identifier>DOI: 10.2298/PIM1613067S</identifier><language>eng</language><ispartof>Publications de l'Institut mathématique (Belgrade), 2016, Vol.99 (113), p.67-76</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2738-6084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sredojevic, Bratislav</creatorcontrib><creatorcontrib>Bojovic, Dejan</creatorcontrib><title>Finite difference approximation for parabolic interface problem with time-dependent coefficients</title><title>Publications de l'Institut mathématique (Belgrade)</title><description>The convergence of difference scheme for two-dimensional initial boundary
value problem for the heat equation with concentrated capacity and
time-dependent coefficients of the space derivatives, is considered. An
estimate of the rate of convergence in a special discrete W~12,1/2 Sobolev
norm, compatible with the smoothness of the coefficients and solution, is
proved.</description><issn>0350-1302</issn><issn>1820-7405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNUEtLxDAYDKJgXT35B3KXaB5tmh5lcd2FFQX1XJP0C0a2SUkC6r-3RQ-eZmAeMIPQJaPXnHfq5mn3wCQTVLbPR6hiilPS1rQ5RhUVDSWzwk_RWc4flNK6pbJCbxsffAE8eOcgQbCA9TSl-OVHXXwM2MWEJ520iQdvsQ8FktOza_aYA4z405d3XPwIZIAJwgChYBvBOW_9zPM5OnH6kOHiD1fodXP3st6S_eP9bn27J5ZzVQjvOsnaVrhusIo2WoCCrmYgtBBGuUZpq-qGAZO6lkppMxhnrVzQsCW4Qle_vTbFnBO4fkrzhvTdM9ov5_T_zhE_cZdZ1g</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Sredojevic, Bratislav</creator><creator>Bojovic, Dejan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2738-6084</orcidid></search><sort><creationdate>2016</creationdate><title>Finite difference approximation for parabolic interface problem with time-dependent coefficients</title><author>Sredojevic, Bratislav ; Bojovic, Dejan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-29961773f9dc805a3e8e941e3a33b8f58ac8451e16a4688abdbfcc6abdbb11773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sredojevic, Bratislav</creatorcontrib><creatorcontrib>Bojovic, Dejan</creatorcontrib><collection>CrossRef</collection><jtitle>Publications de l'Institut mathématique (Belgrade)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sredojevic, Bratislav</au><au>Bojovic, Dejan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite difference approximation for parabolic interface problem with time-dependent coefficients</atitle><jtitle>Publications de l'Institut mathématique (Belgrade)</jtitle><date>2016</date><risdate>2016</risdate><volume>99</volume><issue>113</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>0350-1302</issn><eissn>1820-7405</eissn><abstract>The convergence of difference scheme for two-dimensional initial boundary
value problem for the heat equation with concentrated capacity and
time-dependent coefficients of the space derivatives, is considered. An
estimate of the rate of convergence in a special discrete W~12,1/2 Sobolev
norm, compatible with the smoothness of the coefficients and solution, is
proved.</abstract><doi>10.2298/PIM1613067S</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2738-6084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0350-1302 |
ispartof | Publications de l'Institut mathématique (Belgrade), 2016, Vol.99 (113), p.67-76 |
issn | 0350-1302 1820-7405 |
language | eng |
recordid | cdi_crossref_primary_10_2298_PIM1613067S |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Finite difference approximation for parabolic interface problem with time-dependent coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20difference%20approximation%20for%20parabolic%20interface%20problem%20with%20time-dependent%20coefficients&rft.jtitle=Publications%20de%20l'Institut%20math%C3%A9matique%20(Belgrade)&rft.au=Sredojevic,%20Bratislav&rft.date=2016&rft.volume=99&rft.issue=113&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=0350-1302&rft.eissn=1820-7405&rft_id=info:doi/10.2298/PIM1613067S&rft_dat=%3Ccrossref%3E10_2298_PIM1613067S%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |