Compact XOR-bi-decomposition for lattices of Boolean functions

Bi-Decomposition is a powerful approach for the synthesis of multi-level combinational circuits because it utilizes the properties of the given functions to find small circuits, with low power consumption and low delay. Compact bi-decompositions restrict the variables in the support of the decomposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Facta universitatis. Series Electronics and energetics 2018-06, Vol.31 (2), p.223-240
Hauptverfasser: Steinbach, Bernd, Posthoff, Christian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 2
container_start_page 223
container_title Facta universitatis. Series Electronics and energetics
container_volume 31
creator Steinbach, Bernd
Posthoff, Christian
description Bi-Decomposition is a powerful approach for the synthesis of multi-level combinational circuits because it utilizes the properties of the given functions to find small circuits, with low power consumption and low delay. Compact bi-decompositions restrict the variables in the support of the decomposition functions as much as possible. Methods to find compact AND-, OR-, or XOR-bi-decompositions for a given completely specified function are well known. Lattices of Boolean Functions significantly increase the possibilities to synthesize a minimal circuit. However, so far only methods to find compact AND- or OR-bi-decompositions for lattices of Boolean functions are known. This gap, i.e., a method to find a compact XOR-bi-decomposition for a lattice of Boolean functions, has been closed by the approach suggested in this paper. nema
doi_str_mv 10.2298/FUEE1802223S
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FUEE1802223S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FUEE1802223S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-d22138e993a0a463714591ce1399c1ae1bc0c169c24b32e21a8f165095198cd53</originalsourceid><addsrcrecordid>eNpNj0FLw0AUhBdRsNTe_AH5Aa7uey-b5F0EDakKhYJa8BY2LxuIpN2SjQf_vSl6cC4Dw8cwo9Q1mFtELu7Wu6qCwiAivZ2pBSLk2jLn52phyJKmLDeXahXjp5mVMhHyQt2XYX90MiUf21fd9Lr1Mgch9lMfDkkXxmRw09SLj0nokscQBu_m_OsgJyBeqYvODdGv_nypduvqvXzWm-3TS_mw0QKZmXQ7r6HCM5MzLs0oh9QyiAdiFnAeGjEzyYJpQ-gRXNFBZg1b4EJaS0t189srY4hx9F19HPu9G79rMPXpfv3_Pv0AlORLuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compact XOR-bi-decomposition for lattices of Boolean functions</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Steinbach, Bernd ; Posthoff, Christian</creator><creatorcontrib>Steinbach, Bernd ; Posthoff, Christian</creatorcontrib><description>Bi-Decomposition is a powerful approach for the synthesis of multi-level combinational circuits because it utilizes the properties of the given functions to find small circuits, with low power consumption and low delay. Compact bi-decompositions restrict the variables in the support of the decomposition functions as much as possible. Methods to find compact AND-, OR-, or XOR-bi-decompositions for a given completely specified function are well known. Lattices of Boolean Functions significantly increase the possibilities to synthesize a minimal circuit. However, so far only methods to find compact AND- or OR-bi-decompositions for lattices of Boolean functions are known. This gap, i.e., a method to find a compact XOR-bi-decomposition for a lattice of Boolean functions, has been closed by the approach suggested in this paper. nema</description><identifier>ISSN: 0353-3670</identifier><identifier>EISSN: 2217-5997</identifier><identifier>DOI: 10.2298/FUEE1802223S</identifier><language>eng</language><ispartof>Facta universitatis. Series Electronics and energetics, 2018-06, Vol.31 (2), p.223-240</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Steinbach, Bernd</creatorcontrib><creatorcontrib>Posthoff, Christian</creatorcontrib><title>Compact XOR-bi-decomposition for lattices of Boolean functions</title><title>Facta universitatis. Series Electronics and energetics</title><description>Bi-Decomposition is a powerful approach for the synthesis of multi-level combinational circuits because it utilizes the properties of the given functions to find small circuits, with low power consumption and low delay. Compact bi-decompositions restrict the variables in the support of the decomposition functions as much as possible. Methods to find compact AND-, OR-, or XOR-bi-decompositions for a given completely specified function are well known. Lattices of Boolean Functions significantly increase the possibilities to synthesize a minimal circuit. However, so far only methods to find compact AND- or OR-bi-decompositions for lattices of Boolean functions are known. This gap, i.e., a method to find a compact XOR-bi-decomposition for a lattice of Boolean functions, has been closed by the approach suggested in this paper. nema</description><issn>0353-3670</issn><issn>2217-5997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj0FLw0AUhBdRsNTe_AH5Aa7uey-b5F0EDakKhYJa8BY2LxuIpN2SjQf_vSl6cC4Dw8cwo9Q1mFtELu7Wu6qCwiAivZ2pBSLk2jLn52phyJKmLDeXahXjp5mVMhHyQt2XYX90MiUf21fd9Lr1Mgch9lMfDkkXxmRw09SLj0nokscQBu_m_OsgJyBeqYvODdGv_nypduvqvXzWm-3TS_mw0QKZmXQ7r6HCM5MzLs0oh9QyiAdiFnAeGjEzyYJpQ-gRXNFBZg1b4EJaS0t189srY4hx9F19HPu9G79rMPXpfv3_Pv0AlORLuQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Steinbach, Bernd</creator><creator>Posthoff, Christian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Compact XOR-bi-decomposition for lattices of Boolean functions</title><author>Steinbach, Bernd ; Posthoff, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-d22138e993a0a463714591ce1399c1ae1bc0c169c24b32e21a8f165095198cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinbach, Bernd</creatorcontrib><creatorcontrib>Posthoff, Christian</creatorcontrib><collection>CrossRef</collection><jtitle>Facta universitatis. Series Electronics and energetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinbach, Bernd</au><au>Posthoff, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact XOR-bi-decomposition for lattices of Boolean functions</atitle><jtitle>Facta universitatis. Series Electronics and energetics</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>31</volume><issue>2</issue><spage>223</spage><epage>240</epage><pages>223-240</pages><issn>0353-3670</issn><eissn>2217-5997</eissn><abstract>Bi-Decomposition is a powerful approach for the synthesis of multi-level combinational circuits because it utilizes the properties of the given functions to find small circuits, with low power consumption and low delay. Compact bi-decompositions restrict the variables in the support of the decomposition functions as much as possible. Methods to find compact AND-, OR-, or XOR-bi-decompositions for a given completely specified function are well known. Lattices of Boolean Functions significantly increase the possibilities to synthesize a minimal circuit. However, so far only methods to find compact AND- or OR-bi-decompositions for lattices of Boolean functions are known. This gap, i.e., a method to find a compact XOR-bi-decomposition for a lattice of Boolean functions, has been closed by the approach suggested in this paper. nema</abstract><doi>10.2298/FUEE1802223S</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0353-3670
ispartof Facta universitatis. Series Electronics and energetics, 2018-06, Vol.31 (2), p.223-240
issn 0353-3670
2217-5997
language eng
recordid cdi_crossref_primary_10_2298_FUEE1802223S
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Compact XOR-bi-decomposition for lattices of Boolean functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20XOR-bi-decomposition%20for%20lattices%20of%20Boolean%20functions&rft.jtitle=Facta%20universitatis.%20Series%20Electronics%20and%20energetics&rft.au=Steinbach,%20Bernd&rft.date=2018-06-01&rft.volume=31&rft.issue=2&rft.spage=223&rft.epage=240&rft.pages=223-240&rft.issn=0353-3670&rft.eissn=2217-5997&rft_id=info:doi/10.2298/FUEE1802223S&rft_dat=%3Ccrossref%3E10_2298_FUEE1802223S%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true