Meta-metallic Riemannian manifolds
In this study, motivated by the Meta-Golden-Chi ratio, we develop essentially Meta-Metallic manifolds by using Meta-Metallic-Chi ratio and Metallic manifolds, provide an example and explore certain features of its Meta-Metallic structure. We give the conditions for integrability of the almost Meta-M...
Gespeichert in:
Veröffentlicht in: | Filomat 2024, Vol.38 (1), p.315-323 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 1 |
container_start_page | 315 |
container_title | Filomat |
container_volume | 38 |
creator | Erdoğan, Feyza Perktaş, Selcen Bozdağ, Şerife |
description | In this study, motivated by the Meta-Golden-Chi ratio, we develop essentially Meta-Metallic manifolds by using Meta-Metallic-Chi ratio and Metallic manifolds, provide an example and explore certain features of its Meta-Metallic structure. We give the conditions for integrability of the almost Meta-Metallic structure and examine its relation to the curvature tensor field. We further demonstrate that the Meta-Metallic Riemannian manifold is flat if and only if its curvature is constant. As a result, we show that a different notion of sectional curvature is needed in Meta-Metallic Riemannian manifolds. |
doi_str_mv | 10.2298/FIL2401315E |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2401315E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2401315E</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-b53a634374dff84b7d83cd45d8a928f977ff1714debfae7cdcff9dac341e13473</originalsourceid><addsrcrecordid>eNpNj8FKAzEURUNRcKxd-QPFrUSTvJdJspTSamFEELseMkkepMxMZdKNf--ILtzcc1cHDmO3Ujwo5ezjbt8oFBKk3i5YNd-aCwdwwSoBGrmWVlyx61KOQqCq0VTs7jWdPR_m6fsc1u85DX4csx_XMzOd-lhu2CX5vqTVH5fssNt-bF548_a83zw1PChlz7zT4GtAMBiJLHYmWggRdbTeKUvOGCJpJMbUkU8mxEDkog-AMklAA0t2_-sN06mUKVH7OeXBT1-tFO1PXvsvD74BpthCGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Meta-metallic Riemannian manifolds</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Erdoğan, Feyza ; Perktaş, Selcen ; Bozdağ, Şerife</creator><creatorcontrib>Erdoğan, Feyza ; Perktaş, Selcen ; Bozdağ, Şerife</creatorcontrib><description>In this study, motivated by the Meta-Golden-Chi ratio, we develop essentially Meta-Metallic manifolds by using Meta-Metallic-Chi ratio and Metallic manifolds, provide an example and explore certain features of its Meta-Metallic structure. We give the conditions for integrability of the almost Meta-Metallic structure and examine its relation to the curvature tensor field. We further demonstrate that the Meta-Metallic Riemannian manifold is flat if and only if its curvature is constant. As a result, we show that a different notion of sectional curvature is needed in Meta-Metallic Riemannian manifolds.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2401315E</identifier><language>eng</language><ispartof>Filomat, 2024, Vol.38 (1), p.315-323</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-b53a634374dff84b7d83cd45d8a928f977ff1714debfae7cdcff9dac341e13473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Erdoğan, Feyza</creatorcontrib><creatorcontrib>Perktaş, Selcen</creatorcontrib><creatorcontrib>Bozdağ, Şerife</creatorcontrib><title>Meta-metallic Riemannian manifolds</title><title>Filomat</title><description>In this study, motivated by the Meta-Golden-Chi ratio, we develop essentially Meta-Metallic manifolds by using Meta-Metallic-Chi ratio and Metallic manifolds, provide an example and explore certain features of its Meta-Metallic structure. We give the conditions for integrability of the almost Meta-Metallic structure and examine its relation to the curvature tensor field. We further demonstrate that the Meta-Metallic Riemannian manifold is flat if and only if its curvature is constant. As a result, we show that a different notion of sectional curvature is needed in Meta-Metallic Riemannian manifolds.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj8FKAzEURUNRcKxd-QPFrUSTvJdJspTSamFEELseMkkepMxMZdKNf--ILtzcc1cHDmO3Ujwo5ezjbt8oFBKk3i5YNd-aCwdwwSoBGrmWVlyx61KOQqCq0VTs7jWdPR_m6fsc1u85DX4csx_XMzOd-lhu2CX5vqTVH5fssNt-bF548_a83zw1PChlz7zT4GtAMBiJLHYmWggRdbTeKUvOGCJpJMbUkU8mxEDkog-AMklAA0t2_-sN06mUKVH7OeXBT1-tFO1PXvsvD74BpthCGQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Erdoğan, Feyza</creator><creator>Perktaş, Selcen</creator><creator>Bozdağ, Şerife</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Meta-metallic Riemannian manifolds</title><author>Erdoğan, Feyza ; Perktaş, Selcen ; Bozdağ, Şerife</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-b53a634374dff84b7d83cd45d8a928f977ff1714debfae7cdcff9dac341e13473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdoğan, Feyza</creatorcontrib><creatorcontrib>Perktaş, Selcen</creatorcontrib><creatorcontrib>Bozdağ, Şerife</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdoğan, Feyza</au><au>Perktaş, Selcen</au><au>Bozdağ, Şerife</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta-metallic Riemannian manifolds</atitle><jtitle>Filomat</jtitle><date>2024</date><risdate>2024</risdate><volume>38</volume><issue>1</issue><spage>315</spage><epage>323</epage><pages>315-323</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this study, motivated by the Meta-Golden-Chi ratio, we develop essentially Meta-Metallic manifolds by using Meta-Metallic-Chi ratio and Metallic manifolds, provide an example and explore certain features of its Meta-Metallic structure. We give the conditions for integrability of the almost Meta-Metallic structure and examine its relation to the curvature tensor field. We further demonstrate that the Meta-Metallic Riemannian manifold is flat if and only if its curvature is constant. As a result, we show that a different notion of sectional curvature is needed in Meta-Metallic Riemannian manifolds.</abstract><doi>10.2298/FIL2401315E</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2024, Vol.38 (1), p.315-323 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL2401315E |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals |
title | Meta-metallic Riemannian manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-metallic%20Riemannian%20manifolds&rft.jtitle=Filomat&rft.au=Erdo%C4%9Fan,%20Feyza&rft.date=2024&rft.volume=38&rft.issue=1&rft.spage=315&rft.epage=323&rft.pages=315-323&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2401315E&rft_dat=%3Ccrossref%3E10_2298_FIL2401315E%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |