A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems
In this study, an efficient collocation method based on Sinc function coupled with double exponential transformation is developed. This approach is used for solving a class of strongly nonlinear regular or weekly singular two-point BVPs with homogeneous or non homogeneous boundary conditions. The pr...
Gespeichert in:
Veröffentlicht in: | Filomat 2023, Vol.37 (29), p.10077-10092 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10092 |
---|---|
container_issue | 29 |
container_start_page | 10077 |
container_title | Filomat |
container_volume | 37 |
creator | Nabati, M. Barati, Ali |
description | In this study, an efficient collocation method based on Sinc function coupled
with double exponential transformation is developed. This approach is used
for solving a class of strongly nonlinear regular or weekly singular
two-point BVPs with homogeneous or non homogeneous boundary conditions. The
properties of the Sinc-collocation scheme were used to reduce the
computations of the problem to the nonlinear system of equations. To use the
Newton method in solving the nonlinear system, its vectormatrix form was
obtained. The convergence analysis of the method is discussed. The analysis
show that the method is convergent exponential. In order to investigate the
capability and accuracy of the method, it is applied to solve several
existing problems chosen from the open literature. The numerical results
compared with other existing methods. The obtained results indicate high
capacity and rapid convergence of the proposed method. |
doi_str_mv | 10.2298/FIL2329077N |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2329077N</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2329077N</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-e306dc640a555504ae33926e9d4730ab7bf46d338ffa181e00657b9386c9f4813</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWKsnv0DuEn35s9nNsRSrhaIXPS_ZbFJW02RJdq3FL-9qPTiXN8PAD94gdE3hljFV3a3WG8aZgrJ8OkEzJkASUJyfohnwQpCCVnCOLnJ-AxBMinKGvhY4d8EQE72PRg9dDFj3fYqf3e6YcvTjr3Ex4TykGLb-gEMMvgtWJ2y8zhlHh_dWv0_NhNuOfiqGfSR97MKAmziGVqcD_tB-tHiiN97u8iU6c9pne_V35-h1df-yfCSb54f1crEhhhbVQCwH2RopQBeTQGjLuWLSqlaUHHRTNk7IlvPKOU0ragFkUTaKV9IoJyrK5-jmyDUp5pysq_s0fZcONYX6Z7f63278GzGyY1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nabati, M. ; Barati, Ali</creator><creatorcontrib>Nabati, M. ; Barati, Ali</creatorcontrib><description>In this study, an efficient collocation method based on Sinc function coupled
with double exponential transformation is developed. This approach is used
for solving a class of strongly nonlinear regular or weekly singular
two-point BVPs with homogeneous or non homogeneous boundary conditions. The
properties of the Sinc-collocation scheme were used to reduce the
computations of the problem to the nonlinear system of equations. To use the
Newton method in solving the nonlinear system, its vectormatrix form was
obtained. The convergence analysis of the method is discussed. The analysis
show that the method is convergent exponential. In order to investigate the
capability and accuracy of the method, it is applied to solve several
existing problems chosen from the open literature. The numerical results
compared with other existing methods. The obtained results indicate high
capacity and rapid convergence of the proposed method.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2329077N</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (29), p.10077-10092</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-e306dc640a555504ae33926e9d4730ab7bf46d338ffa181e00657b9386c9f4813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Nabati, M.</creatorcontrib><creatorcontrib>Barati, Ali</creatorcontrib><title>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</title><title>Filomat</title><description>In this study, an efficient collocation method based on Sinc function coupled
with double exponential transformation is developed. This approach is used
for solving a class of strongly nonlinear regular or weekly singular
two-point BVPs with homogeneous or non homogeneous boundary conditions. The
properties of the Sinc-collocation scheme were used to reduce the
computations of the problem to the nonlinear system of equations. To use the
Newton method in solving the nonlinear system, its vectormatrix form was
obtained. The convergence analysis of the method is discussed. The analysis
show that the method is convergent exponential. In order to investigate the
capability and accuracy of the method, it is applied to solve several
existing problems chosen from the open literature. The numerical results
compared with other existing methods. The obtained results indicate high
capacity and rapid convergence of the proposed method.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEUxIMoWKsnv0DuEn35s9nNsRSrhaIXPS_ZbFJW02RJdq3FL-9qPTiXN8PAD94gdE3hljFV3a3WG8aZgrJ8OkEzJkASUJyfohnwQpCCVnCOLnJ-AxBMinKGvhY4d8EQE72PRg9dDFj3fYqf3e6YcvTjr3Ex4TykGLb-gEMMvgtWJ2y8zhlHh_dWv0_NhNuOfiqGfSR97MKAmziGVqcD_tB-tHiiN97u8iU6c9pne_V35-h1df-yfCSb54f1crEhhhbVQCwH2RopQBeTQGjLuWLSqlaUHHRTNk7IlvPKOU0ragFkUTaKV9IoJyrK5-jmyDUp5pysq_s0fZcONYX6Z7f63278GzGyY1s</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Nabati, M.</creator><creator>Barati, Ali</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</title><author>Nabati, M. ; Barati, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-e306dc640a555504ae33926e9d4730ab7bf46d338ffa181e00657b9386c9f4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabati, M.</creatorcontrib><creatorcontrib>Barati, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabati, M.</au><au>Barati, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>29</issue><spage>10077</spage><epage>10092</epage><pages>10077-10092</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this study, an efficient collocation method based on Sinc function coupled
with double exponential transformation is developed. This approach is used
for solving a class of strongly nonlinear regular or weekly singular
two-point BVPs with homogeneous or non homogeneous boundary conditions. The
properties of the Sinc-collocation scheme were used to reduce the
computations of the problem to the nonlinear system of equations. To use the
Newton method in solving the nonlinear system, its vectormatrix form was
obtained. The convergence analysis of the method is discussed. The analysis
show that the method is convergent exponential. In order to investigate the
capability and accuracy of the method, it is applied to solve several
existing problems chosen from the open literature. The numerical results
compared with other existing methods. The obtained results indicate high
capacity and rapid convergence of the proposed method.</abstract><doi>10.2298/FIL2329077N</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2023, Vol.37 (29), p.10077-10092 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL2329077N |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals |
title | A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sinc-collocation%20approximation%20solution%20for%20strongly%20nonlinear%20class%20of%20weakly%20singular%20two-point%20boundary%20value%20problems&rft.jtitle=Filomat&rft.au=Nabati,%20M.&rft.date=2023&rft.volume=37&rft.issue=29&rft.spage=10077&rft.epage=10092&rft.pages=10077-10092&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2329077N&rft_dat=%3Ccrossref%3E10_2298_FIL2329077N%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |