A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems

In this study, an efficient collocation method based on Sinc function coupled with double exponential transformation is developed. This approach is used for solving a class of strongly nonlinear regular or weekly singular two-point BVPs with homogeneous or non homogeneous boundary conditions. The pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (29), p.10077-10092
Hauptverfasser: Nabati, M., Barati, Ali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10092
container_issue 29
container_start_page 10077
container_title Filomat
container_volume 37
creator Nabati, M.
Barati, Ali
description In this study, an efficient collocation method based on Sinc function coupled with double exponential transformation is developed. This approach is used for solving a class of strongly nonlinear regular or weekly singular two-point BVPs with homogeneous or non homogeneous boundary conditions. The properties of the Sinc-collocation scheme were used to reduce the computations of the problem to the nonlinear system of equations. To use the Newton method in solving the nonlinear system, its vectormatrix form was obtained. The convergence analysis of the method is discussed. The analysis show that the method is convergent exponential. In order to investigate the capability and accuracy of the method, it is applied to solve several existing problems chosen from the open literature. The numerical results compared with other existing methods. The obtained results indicate high capacity and rapid convergence of the proposed method.
doi_str_mv 10.2298/FIL2329077N
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2329077N</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2329077N</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-e306dc640a555504ae33926e9d4730ab7bf46d338ffa181e00657b9386c9f4813</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWKsnv0DuEn35s9nNsRSrhaIXPS_ZbFJW02RJdq3FL-9qPTiXN8PAD94gdE3hljFV3a3WG8aZgrJ8OkEzJkASUJyfohnwQpCCVnCOLnJ-AxBMinKGvhY4d8EQE72PRg9dDFj3fYqf3e6YcvTjr3Ex4TykGLb-gEMMvgtWJ2y8zhlHh_dWv0_NhNuOfiqGfSR97MKAmziGVqcD_tB-tHiiN97u8iU6c9pne_V35-h1df-yfCSb54f1crEhhhbVQCwH2RopQBeTQGjLuWLSqlaUHHRTNk7IlvPKOU0ragFkUTaKV9IoJyrK5-jmyDUp5pysq_s0fZcONYX6Z7f63278GzGyY1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nabati, M. ; Barati, Ali</creator><creatorcontrib>Nabati, M. ; Barati, Ali</creatorcontrib><description>In this study, an efficient collocation method based on Sinc function coupled with double exponential transformation is developed. This approach is used for solving a class of strongly nonlinear regular or weekly singular two-point BVPs with homogeneous or non homogeneous boundary conditions. The properties of the Sinc-collocation scheme were used to reduce the computations of the problem to the nonlinear system of equations. To use the Newton method in solving the nonlinear system, its vectormatrix form was obtained. The convergence analysis of the method is discussed. The analysis show that the method is convergent exponential. In order to investigate the capability and accuracy of the method, it is applied to solve several existing problems chosen from the open literature. The numerical results compared with other existing methods. The obtained results indicate high capacity and rapid convergence of the proposed method.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2329077N</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (29), p.10077-10092</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-e306dc640a555504ae33926e9d4730ab7bf46d338ffa181e00657b9386c9f4813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Nabati, M.</creatorcontrib><creatorcontrib>Barati, Ali</creatorcontrib><title>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</title><title>Filomat</title><description>In this study, an efficient collocation method based on Sinc function coupled with double exponential transformation is developed. This approach is used for solving a class of strongly nonlinear regular or weekly singular two-point BVPs with homogeneous or non homogeneous boundary conditions. The properties of the Sinc-collocation scheme were used to reduce the computations of the problem to the nonlinear system of equations. To use the Newton method in solving the nonlinear system, its vectormatrix form was obtained. The convergence analysis of the method is discussed. The analysis show that the method is convergent exponential. In order to investigate the capability and accuracy of the method, it is applied to solve several existing problems chosen from the open literature. The numerical results compared with other existing methods. The obtained results indicate high capacity and rapid convergence of the proposed method.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEUxIMoWKsnv0DuEn35s9nNsRSrhaIXPS_ZbFJW02RJdq3FL-9qPTiXN8PAD94gdE3hljFV3a3WG8aZgrJ8OkEzJkASUJyfohnwQpCCVnCOLnJ-AxBMinKGvhY4d8EQE72PRg9dDFj3fYqf3e6YcvTjr3Ex4TykGLb-gEMMvgtWJ2y8zhlHh_dWv0_NhNuOfiqGfSR97MKAmziGVqcD_tB-tHiiN97u8iU6c9pne_V35-h1df-yfCSb54f1crEhhhbVQCwH2RopQBeTQGjLuWLSqlaUHHRTNk7IlvPKOU0ragFkUTaKV9IoJyrK5-jmyDUp5pysq_s0fZcONYX6Z7f63278GzGyY1s</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Nabati, M.</creator><creator>Barati, Ali</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</title><author>Nabati, M. ; Barati, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-e306dc640a555504ae33926e9d4730ab7bf46d338ffa181e00657b9386c9f4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabati, M.</creatorcontrib><creatorcontrib>Barati, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabati, M.</au><au>Barati, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>29</issue><spage>10077</spage><epage>10092</epage><pages>10077-10092</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this study, an efficient collocation method based on Sinc function coupled with double exponential transformation is developed. This approach is used for solving a class of strongly nonlinear regular or weekly singular two-point BVPs with homogeneous or non homogeneous boundary conditions. The properties of the Sinc-collocation scheme were used to reduce the computations of the problem to the nonlinear system of equations. To use the Newton method in solving the nonlinear system, its vectormatrix form was obtained. The convergence analysis of the method is discussed. The analysis show that the method is convergent exponential. In order to investigate the capability and accuracy of the method, it is applied to solve several existing problems chosen from the open literature. The numerical results compared with other existing methods. The obtained results indicate high capacity and rapid convergence of the proposed method.</abstract><doi>10.2298/FIL2329077N</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2023, Vol.37 (29), p.10077-10092
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2329077N
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals
title A sinc-collocation approximation solution for strongly nonlinear class of weakly singular two-point boundary value problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sinc-collocation%20approximation%20solution%20for%20strongly%20nonlinear%20class%20of%20weakly%20singular%20two-point%20boundary%20value%20problems&rft.jtitle=Filomat&rft.au=Nabati,%20M.&rft.date=2023&rft.volume=37&rft.issue=29&rft.spage=10077&rft.epage=10092&rft.pages=10077-10092&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2329077N&rft_dat=%3Ccrossref%3E10_2298_FIL2329077N%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true