Topological equicontinuity and topological uniform rigidity for dynamical system
In this paper, we study topological equicontinuity, topological uniform rigidity and their properties. For a dynamical system, on a compact, T3 space, we study relations among the set of recurrent points of the map, the set of non-wandering points of the map and the intersection of the range sets of...
Gespeichert in:
Veröffentlicht in: | Filomat 2023, Vol.37 (20), p.6813-6822 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6822 |
---|---|
container_issue | 20 |
container_start_page | 6813 |
container_title | Filomat |
container_volume | 37 |
creator | Kumar, Devender Das, Ruchi |
description | In this paper, we study topological equicontinuity, topological uniform
rigidity and their properties. For a dynamical system, on a compact, T3
space, we study relations among the set of recurrent points of the map, the
set of non-wandering points of the map and the intersection of the range
sets of all iterations of the map. We define topological version of uniform
rigidity and show that on a compact and T3 space any dynamical system is
topologically uniformly rigid if it is first countable, almost topologically
equicontinuous and transitive or it is second countable, topologically
equicontinuous and has a dense set of periodic points. We show that a
topologically uniformly rigid dynamical system, on a compact, Hausdorff
space, has zero topological entropy. Moreover, we provide necessary examples
and counterexamples. |
doi_str_mv | 10.2298/FIL2320813K |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2320813K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2320813K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-2e73b978dc3cb369151239d9864a88ef0f880405e86d6de412d60f96d76b4eb13</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0EEqEw8QeyI8PnRxx7RBWFikgwlDly_KiMkrjYyZB_DwWGTldX5-oOB6FbAveUKvmw2TaUUZCEvZ6hgnIQGBRj56gAVnFcEQmX6CrnTwBOBa8L9L6Lh9jHfTC6L93XHEwcpzDOYVpKPdpyOsHzGHxMQ5nCPtjj4KeVdhn18Ivzkic3XKMLr_vsbv5zhT42T7v1C27enrfrxwYbSuWEqatZp2ppDTMdE4pUhDJllRRcS-k8eCmBQ-WksMI6TqgV4JWwtei46whbobu_X5Nizsn59pDCoNPSEmiPMtoTGewbN2BTOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological equicontinuity and topological uniform rigidity for dynamical system</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumar, Devender ; Das, Ruchi</creator><creatorcontrib>Kumar, Devender ; Das, Ruchi</creatorcontrib><description>In this paper, we study topological equicontinuity, topological uniform
rigidity and their properties. For a dynamical system, on a compact, T3
space, we study relations among the set of recurrent points of the map, the
set of non-wandering points of the map and the intersection of the range
sets of all iterations of the map. We define topological version of uniform
rigidity and show that on a compact and T3 space any dynamical system is
topologically uniformly rigid if it is first countable, almost topologically
equicontinuous and transitive or it is second countable, topologically
equicontinuous and has a dense set of periodic points. We show that a
topologically uniformly rigid dynamical system, on a compact, Hausdorff
space, has zero topological entropy. Moreover, we provide necessary examples
and counterexamples.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2320813K</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (20), p.6813-6822</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-2e73b978dc3cb369151239d9864a88ef0f880405e86d6de412d60f96d76b4eb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Kumar, Devender</creatorcontrib><creatorcontrib>Das, Ruchi</creatorcontrib><title>Topological equicontinuity and topological uniform rigidity for dynamical system</title><title>Filomat</title><description>In this paper, we study topological equicontinuity, topological uniform
rigidity and their properties. For a dynamical system, on a compact, T3
space, we study relations among the set of recurrent points of the map, the
set of non-wandering points of the map and the intersection of the range
sets of all iterations of the map. We define topological version of uniform
rigidity and show that on a compact and T3 space any dynamical system is
topologically uniformly rigid if it is first countable, almost topologically
equicontinuous and transitive or it is second countable, topologically
equicontinuous and has a dense set of periodic points. We show that a
topologically uniformly rigid dynamical system, on a compact, Hausdorff
space, has zero topological entropy. Moreover, we provide necessary examples
and counterexamples.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAYRS0EEqEw8QeyI8PnRxx7RBWFikgwlDly_KiMkrjYyZB_DwWGTldX5-oOB6FbAveUKvmw2TaUUZCEvZ6hgnIQGBRj56gAVnFcEQmX6CrnTwBOBa8L9L6Lh9jHfTC6L93XHEwcpzDOYVpKPdpyOsHzGHxMQ5nCPtjj4KeVdhn18Ivzkic3XKMLr_vsbv5zhT42T7v1C27enrfrxwYbSuWEqatZp2ppDTMdE4pUhDJllRRcS-k8eCmBQ-WksMI6TqgV4JWwtei46whbobu_X5Nizsn59pDCoNPSEmiPMtoTGewbN2BTOg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kumar, Devender</creator><creator>Das, Ruchi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Topological equicontinuity and topological uniform rigidity for dynamical system</title><author>Kumar, Devender ; Das, Ruchi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-2e73b978dc3cb369151239d9864a88ef0f880405e86d6de412d60f96d76b4eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Devender</creatorcontrib><creatorcontrib>Das, Ruchi</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Devender</au><au>Das, Ruchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological equicontinuity and topological uniform rigidity for dynamical system</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>20</issue><spage>6813</spage><epage>6822</epage><pages>6813-6822</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this paper, we study topological equicontinuity, topological uniform
rigidity and their properties. For a dynamical system, on a compact, T3
space, we study relations among the set of recurrent points of the map, the
set of non-wandering points of the map and the intersection of the range
sets of all iterations of the map. We define topological version of uniform
rigidity and show that on a compact and T3 space any dynamical system is
topologically uniformly rigid if it is first countable, almost topologically
equicontinuous and transitive or it is second countable, topologically
equicontinuous and has a dense set of periodic points. We show that a
topologically uniformly rigid dynamical system, on a compact, Hausdorff
space, has zero topological entropy. Moreover, we provide necessary examples
and counterexamples.</abstract><doi>10.2298/FIL2320813K</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2023, Vol.37 (20), p.6813-6822 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL2320813K |
source | JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
title | Topological equicontinuity and topological uniform rigidity for dynamical system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20equicontinuity%20and%20topological%20uniform%20rigidity%20for%20dynamical%20system&rft.jtitle=Filomat&rft.au=Kumar,%20Devender&rft.date=2023&rft.volume=37&rft.issue=20&rft.spage=6813&rft.epage=6822&rft.pages=6813-6822&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2320813K&rft_dat=%3Ccrossref%3E10_2298_FIL2320813K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |