A new type of exponential operator
In the present research, we investigate a novel type of exponential operator. This operator is developed using p(x) = x4/3. Here, we establish the direct estimate, quantitative variants of the Voronovskaja theorem, same quantification for functions having exponential growth and some other convergenc...
Gespeichert in:
Veröffentlicht in: | Filomat 2023, Vol.37 (14), p.4629-4638 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4638 |
---|---|
container_issue | 14 |
container_start_page | 4629 |
container_title | Filomat |
container_volume | 37 |
creator | Gupta, Vijay Anjali, A |
description | In the present research, we investigate a novel type of exponential operator.
This operator is developed using p(x) = x4/3. Here, we establish the direct
estimate, quantitative variants of the Voronovskaja theorem, same
quantification for functions having exponential growth and some other
convergence estimates for the newly defined exponential-type operator. Later
in the end, we analyze graphically the convergence of the new operator for
the exponential function e?4x. |
doi_str_mv | 10.2298/FIL2314629G |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2314629G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2314629G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2ecb95e1a58e062e4f9b70a19a76b204fce764a330afdc8da21caafdc1a334ea3</originalsourceid><addsrcrecordid>eNpNj8FKAzEURYMoOFZX_kBwK6MvL5lksizF1sKAG10Pb9IXqNTJkAxo_16LLlydy1lcOELcKnhA9O3jetuhVsai35yJCg3YGrzW56IC3Zi6US1ciqtS3gEMWuMqcbeUI3_K-TixTFHy15RGHuc9HWSaONOc8rW4iHQofPPHhXhbP72unuvuZbNdLbs6oIO5Rg6Db1hR0zJYZBP94ICUJ2cHBBMDO2tIa6C4C-2OUAU6TfXjDJNeiPvf35BTKZljP-X9B-Vjr6A_5fX_8vQ3mDNCKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new type of exponential operator</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Gupta, Vijay ; Anjali, A</creator><creatorcontrib>Gupta, Vijay ; Anjali, A</creatorcontrib><description>In the present research, we investigate a novel type of exponential operator.
This operator is developed using p(x) = x4/3. Here, we establish the direct
estimate, quantitative variants of the Voronovskaja theorem, same
quantification for functions having exponential growth and some other
convergence estimates for the newly defined exponential-type operator. Later
in the end, we analyze graphically the convergence of the new operator for
the exponential function e?4x.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2314629G</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (14), p.4629-4638</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-2ecb95e1a58e062e4f9b70a19a76b204fce764a330afdc8da21caafdc1a334ea3</citedby><cites>FETCH-LOGICAL-c270t-2ecb95e1a58e062e4f9b70a19a76b204fce764a330afdc8da21caafdc1a334ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Gupta, Vijay</creatorcontrib><creatorcontrib>Anjali, A</creatorcontrib><title>A new type of exponential operator</title><title>Filomat</title><description>In the present research, we investigate a novel type of exponential operator.
This operator is developed using p(x) = x4/3. Here, we establish the direct
estimate, quantitative variants of the Voronovskaja theorem, same
quantification for functions having exponential growth and some other
convergence estimates for the newly defined exponential-type operator. Later
in the end, we analyze graphically the convergence of the new operator for
the exponential function e?4x.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNj8FKAzEURYMoOFZX_kBwK6MvL5lksizF1sKAG10Pb9IXqNTJkAxo_16LLlydy1lcOELcKnhA9O3jetuhVsai35yJCg3YGrzW56IC3Zi6US1ciqtS3gEMWuMqcbeUI3_K-TixTFHy15RGHuc9HWSaONOc8rW4iHQofPPHhXhbP72unuvuZbNdLbs6oIO5Rg6Db1hR0zJYZBP94ICUJ2cHBBMDO2tIa6C4C-2OUAU6TfXjDJNeiPvf35BTKZljP-X9B-Vjr6A_5fX_8vQ3mDNCKw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Gupta, Vijay</creator><creator>Anjali, A</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A new type of exponential operator</title><author>Gupta, Vijay ; Anjali, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2ecb95e1a58e062e4f9b70a19a76b204fce764a330afdc8da21caafdc1a334ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Vijay</creatorcontrib><creatorcontrib>Anjali, A</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Vijay</au><au>Anjali, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new type of exponential operator</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>14</issue><spage>4629</spage><epage>4638</epage><pages>4629-4638</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In the present research, we investigate a novel type of exponential operator.
This operator is developed using p(x) = x4/3. Here, we establish the direct
estimate, quantitative variants of the Voronovskaja theorem, same
quantification for functions having exponential growth and some other
convergence estimates for the newly defined exponential-type operator. Later
in the end, we analyze graphically the convergence of the new operator for
the exponential function e?4x.</abstract><doi>10.2298/FIL2314629G</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2023, Vol.37 (14), p.4629-4638 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL2314629G |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing |
title | A new type of exponential operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20type%20of%20exponential%20operator&rft.jtitle=Filomat&rft.au=Gupta,%20Vijay&rft.date=2023&rft.volume=37&rft.issue=14&rft.spage=4629&rft.epage=4638&rft.pages=4629-4638&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2314629G&rft_dat=%3Ccrossref%3E10_2298_FIL2314629G%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |