A Caristi type fixed point theorem which characterizes metric completeness

In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type fixed point theorems by relaxing the strong continuity assumption of the mapping with some weaker continuity notions. As an application, we show that the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (10), p.3053-3061
1. Verfasser: Bisht, Ravindra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3061
container_issue 10
container_start_page 3053
container_title Filomat
container_volume 37
creator Bisht, Ravindra
description In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type fixed point theorems by relaxing the strong continuity assumption of the mapping with some weaker continuity notions. As an application, we show that the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem characterizes the completeness of the metric space and the Cantor intersection property.
doi_str_mv 10.2298/FIL2310053B
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2310053B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2310053B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</originalsourceid><addsrcrecordid>eNpN0L1OwzAUQGELgUQpTLyAdxS4vtf5G0tEoSgSC8yR41wrRk0T2ZagPD1CMDCd7QyfENcKbhHr6m67a5EUQE73J2KFGooMaqJTsQLKdZarCs7FRYzvABoLXa7E80Y2JviYvEzHhaXznzzIZfaHJNPIc-BJfozejtKOJhibOPgvjnLiFLyVdp6WPSc-cIyX4syZfeSrv67F2_bhtXnK2pfHXbNpM4sAKSucYVMAFY6Urg3XhVacV1j1NZZDjj06gkpZMtQPFedY9to6xp56i8oircXN79eGOcbArluCn0w4dgq6H4buHwN9AzW_UHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Caristi type fixed point theorem which characterizes metric completeness</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bisht, Ravindra</creator><creatorcontrib>Bisht, Ravindra</creatorcontrib><description>In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type fixed point theorems by relaxing the strong continuity assumption of the mapping with some weaker continuity notions. As an application, we show that the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem characterizes the completeness of the metric space and the Cantor intersection property.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2310053B</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (10), p.3053-3061</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</citedby><cites>FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Bisht, Ravindra</creatorcontrib><title>A Caristi type fixed point theorem which characterizes metric completeness</title><title>Filomat</title><description>In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type fixed point theorems by relaxing the strong continuity assumption of the mapping with some weaker continuity notions. As an application, we show that the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem characterizes the completeness of the metric space and the Cantor intersection property.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpN0L1OwzAUQGELgUQpTLyAdxS4vtf5G0tEoSgSC8yR41wrRk0T2ZagPD1CMDCd7QyfENcKbhHr6m67a5EUQE73J2KFGooMaqJTsQLKdZarCs7FRYzvABoLXa7E80Y2JviYvEzHhaXznzzIZfaHJNPIc-BJfozejtKOJhibOPgvjnLiFLyVdp6WPSc-cIyX4syZfeSrv67F2_bhtXnK2pfHXbNpM4sAKSucYVMAFY6Urg3XhVacV1j1NZZDjj06gkpZMtQPFedY9to6xp56i8oircXN79eGOcbArluCn0w4dgq6H4buHwN9AzW_UHY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Bisht, Ravindra</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A Caristi type fixed point theorem which characterizes metric completeness</title><author>Bisht, Ravindra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bisht, Ravindra</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bisht, Ravindra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Caristi type fixed point theorem which characterizes metric completeness</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>10</issue><spage>3053</spage><epage>3061</epage><pages>3053-3061</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type fixed point theorems by relaxing the strong continuity assumption of the mapping with some weaker continuity notions. As an application, we show that the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem characterizes the completeness of the metric space and the Cantor intersection property.</abstract><doi>10.2298/FIL2310053B</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2023, Vol.37 (10), p.3053-3061
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2310053B
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals
title A Caristi type fixed point theorem which characterizes metric completeness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Caristi%20type%20fixed%20point%20theorem%20which%20characterizes%20metric%20completeness&rft.jtitle=Filomat&rft.au=Bisht,%20Ravindra&rft.date=2023&rft.volume=37&rft.issue=10&rft.spage=3053&rft.epage=3061&rft.pages=3053-3061&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2310053B&rft_dat=%3Ccrossref%3E10_2298_FIL2310053B%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true