A Caristi type fixed point theorem which characterizes metric completeness
In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type fixed point theorems by relaxing the strong continuity assumption of the mapping with some weaker continuity notions. As an application, we show that the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem...
Gespeichert in:
Veröffentlicht in: | Filomat 2023, Vol.37 (10), p.3053-3061 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3061 |
---|---|
container_issue | 10 |
container_start_page | 3053 |
container_title | Filomat |
container_volume | 37 |
creator | Bisht, Ravindra |
description | In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type
fixed point theorems by relaxing the strong continuity assumption of the
mapping with some weaker continuity notions. As an application, we show that
the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem
characterizes the completeness of the metric space and the Cantor
intersection property. |
doi_str_mv | 10.2298/FIL2310053B |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2310053B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2310053B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</originalsourceid><addsrcrecordid>eNpN0L1OwzAUQGELgUQpTLyAdxS4vtf5G0tEoSgSC8yR41wrRk0T2ZagPD1CMDCd7QyfENcKbhHr6m67a5EUQE73J2KFGooMaqJTsQLKdZarCs7FRYzvABoLXa7E80Y2JviYvEzHhaXznzzIZfaHJNPIc-BJfozejtKOJhibOPgvjnLiFLyVdp6WPSc-cIyX4syZfeSrv67F2_bhtXnK2pfHXbNpM4sAKSucYVMAFY6Urg3XhVacV1j1NZZDjj06gkpZMtQPFedY9to6xp56i8oircXN79eGOcbArluCn0w4dgq6H4buHwN9AzW_UHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Caristi type fixed point theorem which characterizes metric completeness</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bisht, Ravindra</creator><creatorcontrib>Bisht, Ravindra</creatorcontrib><description>In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type
fixed point theorems by relaxing the strong continuity assumption of the
mapping with some weaker continuity notions. As an application, we show that
the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem
characterizes the completeness of the metric space and the Cantor
intersection property.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2310053B</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (10), p.3053-3061</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</citedby><cites>FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Bisht, Ravindra</creatorcontrib><title>A Caristi type fixed point theorem which characterizes metric completeness</title><title>Filomat</title><description>In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type
fixed point theorems by relaxing the strong continuity assumption of the
mapping with some weaker continuity notions. As an application, we show that
the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem
characterizes the completeness of the metric space and the Cantor
intersection property.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpN0L1OwzAUQGELgUQpTLyAdxS4vtf5G0tEoSgSC8yR41wrRk0T2ZagPD1CMDCd7QyfENcKbhHr6m67a5EUQE73J2KFGooMaqJTsQLKdZarCs7FRYzvABoLXa7E80Y2JviYvEzHhaXznzzIZfaHJNPIc-BJfozejtKOJhibOPgvjnLiFLyVdp6WPSc-cIyX4syZfeSrv67F2_bhtXnK2pfHXbNpM4sAKSucYVMAFY6Urg3XhVacV1j1NZZDjj06gkpZMtQPFedY9to6xp56i8oircXN79eGOcbArluCn0w4dgq6H4buHwN9AzW_UHY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Bisht, Ravindra</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A Caristi type fixed point theorem which characterizes metric completeness</title><author>Bisht, Ravindra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-6faea6036f3149ae9641e5828b927d52b2f3081c3a3bd8e527b4cfe2b3bc21c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bisht, Ravindra</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bisht, Ravindra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Caristi type fixed point theorem which characterizes metric completeness</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>10</issue><spage>3053</spage><epage>3061</epage><pages>3053-3061</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this paper, we improve Caristi-Jachymski-Stein Jr and Banach-Caristi type
fixed point theorems by relaxing the strong continuity assumption of the
mapping with some weaker continuity notions. As an application, we show that
the weaker version of the Caristi-Jachymski-Stein Jr fixed point theorem
characterizes the completeness of the metric space and the Cantor
intersection property.</abstract><doi>10.2298/FIL2310053B</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2023, Vol.37 (10), p.3053-3061 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL2310053B |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals |
title | A Caristi type fixed point theorem which characterizes metric completeness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Caristi%20type%20fixed%20point%20theorem%20which%20characterizes%20metric%20completeness&rft.jtitle=Filomat&rft.au=Bisht,%20Ravindra&rft.date=2023&rft.volume=37&rft.issue=10&rft.spage=3053&rft.epage=3061&rft.pages=3053-3061&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2310053B&rft_dat=%3Ccrossref%3E10_2298_FIL2310053B%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |