Mappings preserving sum of products α1ab + α2ba + α3ba (resp., Α1ab + α2ba + α3ab) on -algebras

Let A and B be two unital prime complex *-algebras such that A has a nontrivial projection. In this paper, we study the structure of the bijective mappings ? ? A ? B preserving sum of products ?1ab* + ?2b*a + ?3ba* (resp., ?1ab* + ?2b*a + ?3a*b), where the scalars {?k}3k =1 are rational numbers sati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (9), p.2799-2806
Hauptverfasser: Taghavi, Ali, da, Motta, Marietto, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2806
container_issue 9
container_start_page 2799
container_title Filomat
container_volume 37
creator Taghavi, Ali
da, Motta
Marietto, Maria
description Let A and B be two unital prime complex *-algebras such that A has a nontrivial projection. In this paper, we study the structure of the bijective mappings ? ? A ? B preserving sum of products ?1ab* + ?2b*a + ?3ba* (resp., ?1ab* + ?2b*a + ?3a*b), where the scalars {?k}3k =1 are rational numbers satisfying some conditions.
doi_str_mv 10.2298/FIL2309799T
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2309799T</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2309799T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c143t-83f18dac70ccbe4ec3d11cbb1c894b37e416394ac02b9c964301d031f4a10a83</originalsourceid><addsrcrecordid>eNplkE1OwzAUhC0EEqGw4gJegorLe35uYi9RRaFSEJvsI9txqqK2iewWiWNwFC7SMxF-FkisvtGMZhbD2CXCREqjb-eLUhKYwpjqiGVSQS7AEB2zDGiqxBQ1nLKzlF4AlMxVkbHwZPt-tV0m3seQQnwdNE_7De_awemavd8lfvhA6_h4oHT2mzTwaij0kxt-eP-XWnfNuy0Xdr0MLtp0zk5au07h4pcjVs3vq9mjKJ8fFrO7UnhUtBOaWtSN9QV474IKnhpE7xx6bZSjIijMySjrQTrjTa4IsAHCVlkEq2nExj-zPnYpxdDWfVxtbHyrEeqvg-o_B9EnTJBZqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mappings preserving sum of products α1ab + α2ba + α3ba (resp., Α1ab + α2ba + α3ab) on -algebras</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Taghavi, Ali ; da, Motta ; Marietto, Maria</creator><creatorcontrib>Taghavi, Ali ; da, Motta ; Marietto, Maria</creatorcontrib><description>Let A and B be two unital prime complex *-algebras such that A has a nontrivial projection. In this paper, we study the structure of the bijective mappings ? ? A ? B preserving sum of products ?1ab* + ?2b*a + ?3ba* (resp., ?1ab* + ?2b*a + ?3a*b), where the scalars {?k}3k =1 are rational numbers satisfying some conditions.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2309799T</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (9), p.2799-2806</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c143t-83f18dac70ccbe4ec3d11cbb1c894b37e416394ac02b9c964301d031f4a10a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Taghavi, Ali</creatorcontrib><creatorcontrib>da, Motta</creatorcontrib><creatorcontrib>Marietto, Maria</creatorcontrib><title>Mappings preserving sum of products α1ab + α2ba + α3ba (resp., Α1ab + α2ba + α3ab) on -algebras</title><title>Filomat</title><description>Let A and B be two unital prime complex *-algebras such that A has a nontrivial projection. In this paper, we study the structure of the bijective mappings ? ? A ? B preserving sum of products ?1ab* + ?2b*a + ?3ba* (resp., ?1ab* + ?2b*a + ?3a*b), where the scalars {?k}3k =1 are rational numbers satisfying some conditions.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNplkE1OwzAUhC0EEqGw4gJegorLe35uYi9RRaFSEJvsI9txqqK2iewWiWNwFC7SMxF-FkisvtGMZhbD2CXCREqjb-eLUhKYwpjqiGVSQS7AEB2zDGiqxBQ1nLKzlF4AlMxVkbHwZPt-tV0m3seQQnwdNE_7De_awemavd8lfvhA6_h4oHT2mzTwaij0kxt-eP-XWnfNuy0Xdr0MLtp0zk5au07h4pcjVs3vq9mjKJ8fFrO7UnhUtBOaWtSN9QV474IKnhpE7xx6bZSjIijMySjrQTrjTa4IsAHCVlkEq2nExj-zPnYpxdDWfVxtbHyrEeqvg-o_B9EnTJBZqQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Taghavi, Ali</creator><creator>da, Motta</creator><creator>Marietto, Maria</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Mappings preserving sum of products α1ab + α2ba + α3ba (resp., Α1ab + α2ba + α3ab) on -algebras</title><author>Taghavi, Ali ; da, Motta ; Marietto, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c143t-83f18dac70ccbe4ec3d11cbb1c894b37e416394ac02b9c964301d031f4a10a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taghavi, Ali</creatorcontrib><creatorcontrib>da, Motta</creatorcontrib><creatorcontrib>Marietto, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taghavi, Ali</au><au>da, Motta</au><au>Marietto, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mappings preserving sum of products α1ab + α2ba + α3ba (resp., Α1ab + α2ba + α3ab) on -algebras</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>9</issue><spage>2799</spage><epage>2806</epage><pages>2799-2806</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Let A and B be two unital prime complex *-algebras such that A has a nontrivial projection. In this paper, we study the structure of the bijective mappings ? ? A ? B preserving sum of products ?1ab* + ?2b*a + ?3ba* (resp., ?1ab* + ?2b*a + ?3a*b), where the scalars {?k}3k =1 are rational numbers satisfying some conditions.</abstract><doi>10.2298/FIL2309799T</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2023, Vol.37 (9), p.2799-2806
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2309799T
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
title Mappings preserving sum of products α1ab + α2ba + α3ba (resp., Α1ab + α2ba + α3ab) on -algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mappings%20preserving%20sum%20of%20products%20%CE%B11ab%20+%20%CE%B12ba%20+%20%CE%B13ba%20(resp.,%20%CE%911ab%20+%20%CE%B12ba%20+%20%CE%B13ab)%20on%20-algebras&rft.jtitle=Filomat&rft.au=Taghavi,%20Ali&rft.date=2023&rft.volume=37&rft.issue=9&rft.spage=2799&rft.epage=2806&rft.pages=2799-2806&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2309799T&rft_dat=%3Ccrossref%3E10_2298_FIL2309799T%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true