Some geometric and physical properties of pseudo m-projective symmetric manifolds

In this study we introduce a new tensor in a semi-Riemannian manifold, named the M*-projective curvature tensor which generalizes the m-projective curvature tensor. We start by deducing some fundamental geometric properties of the M*-projective curvature tensor. After that, we study pseudo M*-projec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2023, Vol.37 (8), p.2465-2482
Hauptverfasser: Hazra, Dipankar, De, Chand, Shenawy, Sameh, Syied, Abdallah Abdelhameed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2482
container_issue 8
container_start_page 2465
container_title Filomat
container_volume 37
creator Hazra, Dipankar
De, Chand
Shenawy, Sameh
Syied, Abdallah Abdelhameed
description In this study we introduce a new tensor in a semi-Riemannian manifold, named the M*-projective curvature tensor which generalizes the m-projective curvature tensor. We start by deducing some fundamental geometric properties of the M*-projective curvature tensor. After that, we study pseudo M*-projective symmetric manifolds (PM?S)n. A non-trivial example has been used to show the existence of such a manifold. We introduce a series of interesting conclusions. We establish, among other things, that if the scalar curvature ? is non-zero, the associated 1-form is closed for a (PM?S)n with divM* = 0. We also deal with pseudo M*-projective symmetric spacetimes, M*-projectively flat perfect fluid spacetimes, and M*-projectively flat viscous fluid spacetimes. As a result, we establish some significant theorems.
doi_str_mv 10.2298/FIL2308465H
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2308465H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2308465H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-a92ce49aa2fd85c64205d96fce2e3dcfcb9621e2df3535a94010b2349ef680ea3</originalsourceid><addsrcrecordid>eNpNkE1LxDAURYMoWEdX_oHsJfr68mGzlMFxBgoi6rpkkhft0E5LUoX-e0echZt74cK5i8PYdQm3iLa6W21qlFApo9cnrEAFRoCV8pQVILUSuqzgnF3kvANQaNR9wV5eh574Bx1ySq3nbh_4-Dnn1ruOj2kYKU0tZT5EPmb6CgPvxWHekZ_ab-J57o9g7_ZtHLqQL9lZdF2mq2Mv2Pvq8W25FvXz02b5UAuPWE3CWfSkrHMYQ6W9UQg6WBM9Icngo99agyVhiFJL7ayCErYolaVoKiAnF-zm79enIedEsRlT27s0NyU0vzaafzbkD332VA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some geometric and physical properties of pseudo m-projective symmetric manifolds</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hazra, Dipankar ; De, Chand ; Shenawy, Sameh ; Syied, Abdallah Abdelhameed</creator><creatorcontrib>Hazra, Dipankar ; De, Chand ; Shenawy, Sameh ; Syied, Abdallah Abdelhameed</creatorcontrib><description>In this study we introduce a new tensor in a semi-Riemannian manifold, named the M*-projective curvature tensor which generalizes the m-projective curvature tensor. We start by deducing some fundamental geometric properties of the M*-projective curvature tensor. After that, we study pseudo M*-projective symmetric manifolds (PM?S)n. A non-trivial example has been used to show the existence of such a manifold. We introduce a series of interesting conclusions. We establish, among other things, that if the scalar curvature ? is non-zero, the associated 1-form is closed for a (PM?S)n with divM* = 0. We also deal with pseudo M*-projective symmetric spacetimes, M*-projectively flat perfect fluid spacetimes, and M*-projectively flat viscous fluid spacetimes. As a result, we establish some significant theorems.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2308465H</identifier><language>eng</language><ispartof>Filomat, 2023, Vol.37 (8), p.2465-2482</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-a92ce49aa2fd85c64205d96fce2e3dcfcb9621e2df3535a94010b2349ef680ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hazra, Dipankar</creatorcontrib><creatorcontrib>De, Chand</creatorcontrib><creatorcontrib>Shenawy, Sameh</creatorcontrib><creatorcontrib>Syied, Abdallah Abdelhameed</creatorcontrib><title>Some geometric and physical properties of pseudo m-projective symmetric manifolds</title><title>Filomat</title><description>In this study we introduce a new tensor in a semi-Riemannian manifold, named the M*-projective curvature tensor which generalizes the m-projective curvature tensor. We start by deducing some fundamental geometric properties of the M*-projective curvature tensor. After that, we study pseudo M*-projective symmetric manifolds (PM?S)n. A non-trivial example has been used to show the existence of such a manifold. We introduce a series of interesting conclusions. We establish, among other things, that if the scalar curvature ? is non-zero, the associated 1-form is closed for a (PM?S)n with divM* = 0. We also deal with pseudo M*-projective symmetric spacetimes, M*-projectively flat perfect fluid spacetimes, and M*-projectively flat viscous fluid spacetimes. As a result, we establish some significant theorems.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAURYMoWEdX_oHsJfr68mGzlMFxBgoi6rpkkhft0E5LUoX-e0echZt74cK5i8PYdQm3iLa6W21qlFApo9cnrEAFRoCV8pQVILUSuqzgnF3kvANQaNR9wV5eh574Bx1ySq3nbh_4-Dnn1ruOj2kYKU0tZT5EPmb6CgPvxWHekZ_ab-J57o9g7_ZtHLqQL9lZdF2mq2Mv2Pvq8W25FvXz02b5UAuPWE3CWfSkrHMYQ6W9UQg6WBM9Icngo99agyVhiFJL7ayCErYolaVoKiAnF-zm79enIedEsRlT27s0NyU0vzaafzbkD332VA0</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hazra, Dipankar</creator><creator>De, Chand</creator><creator>Shenawy, Sameh</creator><creator>Syied, Abdallah Abdelhameed</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Some geometric and physical properties of pseudo m-projective symmetric manifolds</title><author>Hazra, Dipankar ; De, Chand ; Shenawy, Sameh ; Syied, Abdallah Abdelhameed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-a92ce49aa2fd85c64205d96fce2e3dcfcb9621e2df3535a94010b2349ef680ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazra, Dipankar</creatorcontrib><creatorcontrib>De, Chand</creatorcontrib><creatorcontrib>Shenawy, Sameh</creatorcontrib><creatorcontrib>Syied, Abdallah Abdelhameed</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazra, Dipankar</au><au>De, Chand</au><au>Shenawy, Sameh</au><au>Syied, Abdallah Abdelhameed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some geometric and physical properties of pseudo m-projective symmetric manifolds</atitle><jtitle>Filomat</jtitle><date>2023</date><risdate>2023</risdate><volume>37</volume><issue>8</issue><spage>2465</spage><epage>2482</epage><pages>2465-2482</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this study we introduce a new tensor in a semi-Riemannian manifold, named the M*-projective curvature tensor which generalizes the m-projective curvature tensor. We start by deducing some fundamental geometric properties of the M*-projective curvature tensor. After that, we study pseudo M*-projective symmetric manifolds (PM?S)n. A non-trivial example has been used to show the existence of such a manifold. We introduce a series of interesting conclusions. We establish, among other things, that if the scalar curvature ? is non-zero, the associated 1-form is closed for a (PM?S)n with divM* = 0. We also deal with pseudo M*-projective symmetric spacetimes, M*-projectively flat perfect fluid spacetimes, and M*-projectively flat viscous fluid spacetimes. As a result, we establish some significant theorems.</abstract><doi>10.2298/FIL2308465H</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2023, Vol.37 (8), p.2465-2482
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2308465H
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
title Some geometric and physical properties of pseudo m-projective symmetric manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20geometric%20and%20physical%20properties%20of%20pseudo%20m-projective%20symmetric%20manifolds&rft.jtitle=Filomat&rft.au=Hazra,%20Dipankar&rft.date=2023&rft.volume=37&rft.issue=8&rft.spage=2465&rft.epage=2482&rft.pages=2465-2482&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2308465H&rft_dat=%3Ccrossref%3E10_2298_FIL2308465H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true