On non-null relatively normal-slant helices in Minkowski 3-space
By using the Darboux frame |?, ?, ?| of a non-null curve lying on a timelike surface in Minkowski 3-space, where ? is the unit tangent vector of the curve, ? is the unit spacelike normal vector field restricted to the curve and ? = ?? ? ?, we define relatively normal-slant helices as the curves sati...
Gespeichert in:
Veröffentlicht in: | Filomat 2022, Vol.36 (6), p.2051-2062 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using the Darboux frame |?, ?, ?| of a non-null curve lying on a
timelike surface in Minkowski 3-space, where ? is the unit tangent vector of
the curve, ? is the unit spacelike normal vector field restricted to the
curve and ? = ?? ? ?, we define relatively normal-slant helices as the
curves satisfying the condition that the scalar product of the fixed vector
spanning their axis and the non-constant vector field ? is constant. We give
the necessary and sufficient conditions for non-null curves lying on a
timelike surface to be relatively normal-slant helices. We consider the
special cases when non-null relatively-normal slant helices are geodesic
curves, asymptotic curves, or lines of the principal curvature. We show that
an asymptotic spacelike hyperbolic helix lying on the principal normal
surface over the helix and a geodesic spacelike general helix lying on the
timelike cylindrical ruled surface, are some examples of non-null relatively
normal-slant helices in E31. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2206051N |