Deviations for random sums indexed by the generations of a branching process

Applying the results about harmonic moments of classical Galton-Watson process, we obtain the deviations for random sums indexed by the generations of a branching process. Our results show that the decay rates of large deviations and moderate deviations depend heavily on the degree of the heavy tail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2021, Vol.35 (10), p.3303-3317
Hauptverfasser: Zhu, Yanjiao, Gao, Zhenlong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3317
container_issue 10
container_start_page 3303
container_title Filomat
container_volume 35
creator Zhu, Yanjiao
Gao, Zhenlong
description Applying the results about harmonic moments of classical Galton-Watson process, we obtain the deviations for random sums indexed by the generations of a branching process. Our results show that the decay rates of large deviations and moderate deviations depend heavily on the degree of the heavy tail and the asymptotic distributions depend heavily on the normalizing constants. If the underlying Galton-Watson process belongs to the Schr?der case, both large deviation and moderate deviation probabilities show three decay rates, where the critical case depends heavily on the Schr?der index. Else if the Galton-Watson process belongs to the B?ttcher case, there are only two decay rate for both large deviation and moderate deviation probabilities. Simulations are also given to illustrate our results.
doi_str_mv 10.2298/FIL2110303Z
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2110303Z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2110303Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-1ebd782e90804bc33ebbf6506f7db79f6901908a24955030232839eeb00d9e533</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqEw8Qe8o8DzV2KPqNBSKRILLCyRHT-3QSSu7IDovyeIDkx3uEdXuoeQawa3nBt9t9o0nDEQIN5OSMElVCUYIU5JAULJUjEN5-Qi53cAyStZF6R5wK_eTn0cMw0x0WRHHweaP4dM-9HjN3rqDnTaId3iiOmIxkAtdTPc7fpxS_cpdpjzJTkL9iPj1TEX5HX1-LJ8Kpvn9WZ535Qd53oqGTpfa44GNEjXCYHOhUpBFWrvahMqA2zuLJdGqfkMF1wLg-gAvEElxILc_O12KeacMLT71A82HVoG7a-I9p8I8QOwC1Af</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deviations for random sums indexed by the generations of a branching process</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Yanjiao ; Gao, Zhenlong</creator><creatorcontrib>Zhu, Yanjiao ; Gao, Zhenlong</creatorcontrib><description>Applying the results about harmonic moments of classical Galton-Watson process, we obtain the deviations for random sums indexed by the generations of a branching process. Our results show that the decay rates of large deviations and moderate deviations depend heavily on the degree of the heavy tail and the asymptotic distributions depend heavily on the normalizing constants. If the underlying Galton-Watson process belongs to the Schr?der case, both large deviation and moderate deviation probabilities show three decay rates, where the critical case depends heavily on the Schr?der index. Else if the Galton-Watson process belongs to the B?ttcher case, there are only two decay rate for both large deviation and moderate deviation probabilities. Simulations are also given to illustrate our results.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2110303Z</identifier><language>eng</language><ispartof>Filomat, 2021, Vol.35 (10), p.3303-3317</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Yanjiao</creatorcontrib><creatorcontrib>Gao, Zhenlong</creatorcontrib><title>Deviations for random sums indexed by the generations of a branching process</title><title>Filomat</title><description>Applying the results about harmonic moments of classical Galton-Watson process, we obtain the deviations for random sums indexed by the generations of a branching process. Our results show that the decay rates of large deviations and moderate deviations depend heavily on the degree of the heavy tail and the asymptotic distributions depend heavily on the normalizing constants. If the underlying Galton-Watson process belongs to the Schr?der case, both large deviation and moderate deviation probabilities show three decay rates, where the critical case depends heavily on the Schr?der index. Else if the Galton-Watson process belongs to the B?ttcher case, there are only two decay rate for both large deviation and moderate deviation probabilities. Simulations are also given to illustrate our results.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EEqEw8Qe8o8DzV2KPqNBSKRILLCyRHT-3QSSu7IDovyeIDkx3uEdXuoeQawa3nBt9t9o0nDEQIN5OSMElVCUYIU5JAULJUjEN5-Qi53cAyStZF6R5wK_eTn0cMw0x0WRHHweaP4dM-9HjN3rqDnTaId3iiOmIxkAtdTPc7fpxS_cpdpjzJTkL9iPj1TEX5HX1-LJ8Kpvn9WZ535Qd53oqGTpfa44GNEjXCYHOhUpBFWrvahMqA2zuLJdGqfkMF1wLg-gAvEElxILc_O12KeacMLT71A82HVoG7a-I9p8I8QOwC1Af</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhu, Yanjiao</creator><creator>Gao, Zhenlong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Deviations for random sums indexed by the generations of a branching process</title><author>Zhu, Yanjiao ; Gao, Zhenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-1ebd782e90804bc33ebbf6506f7db79f6901908a24955030232839eeb00d9e533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yanjiao</creatorcontrib><creatorcontrib>Gao, Zhenlong</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yanjiao</au><au>Gao, Zhenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deviations for random sums indexed by the generations of a branching process</atitle><jtitle>Filomat</jtitle><date>2021</date><risdate>2021</risdate><volume>35</volume><issue>10</issue><spage>3303</spage><epage>3317</epage><pages>3303-3317</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Applying the results about harmonic moments of classical Galton-Watson process, we obtain the deviations for random sums indexed by the generations of a branching process. Our results show that the decay rates of large deviations and moderate deviations depend heavily on the degree of the heavy tail and the asymptotic distributions depend heavily on the normalizing constants. If the underlying Galton-Watson process belongs to the Schr?der case, both large deviation and moderate deviation probabilities show three decay rates, where the critical case depends heavily on the Schr?der index. Else if the Galton-Watson process belongs to the B?ttcher case, there are only two decay rate for both large deviation and moderate deviation probabilities. Simulations are also given to illustrate our results.</abstract><doi>10.2298/FIL2110303Z</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2021, Vol.35 (10), p.3303-3317
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2110303Z
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
title Deviations for random sums indexed by the generations of a branching process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deviations%20for%20random%20sums%20indexed%20by%20the%20generations%20of%20a%20branching%20process&rft.jtitle=Filomat&rft.au=Zhu,%20Yanjiao&rft.date=2021&rft.volume=35&rft.issue=10&rft.spage=3303&rft.epage=3317&rft.pages=3303-3317&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2110303Z&rft_dat=%3Ccrossref%3E10_2298_FIL2110303Z%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true