Generalized quantum exponential function and its applications

This article aims to present (q; h)-analogue of exponential function which unifies, extends hand q-exponential functions in a convenient and efficient form. For this purpose, we introduce generalized quantum binomial which serves as an analogue of an ordinary polynomial. We state (q,h)-analogue of T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2019, Vol.33 (15), p.4907-4922
Hauptverfasser: Silindir, Burcu, Yantir, Ahmet
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4922
container_issue 15
container_start_page 4907
container_title Filomat
container_volume 33
creator Silindir, Burcu
Yantir, Ahmet
description This article aims to present (q; h)-analogue of exponential function which unifies, extends hand q-exponential functions in a convenient and efficient form. For this purpose, we introduce generalized quantum binomial which serves as an analogue of an ordinary polynomial. We state (q,h)-analogue of Taylor series and introduce generalized quantum exponential function which is determined by Taylor series in generalized quantum binomial. Furthermore, we prove existence and uniqueness theorem for a first order, linear, homogeneous IVP whose solution produces an infinite product form for generalized quantum exponential function. We conclude that both representations of generalized quantum exponential function are equivalent. We illustrate our results by ordinary and partial difference equations. Finally, we present a generic dynamic wave equation which admits generalized trigonometric, hyperbolic type of solutions and produces various kinds of partial differential/difference equations. nema
doi_str_mv 10.2298/FIL1915907S
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1915907S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL1915907S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e748b3f396c1f71100273dd4d2ed5e629697691dc2732002a4bf051383b8fdac3</originalsourceid><addsrcrecordid>eNpNj01LxDAURYMoWEdX_oHspfqSlybNwoUMzjhQcKGuS5oPiHTS2rSg_npn0IWrC_ceLhxCrhnccq7ru82uYZpVGtTLCSm4AFmCRjwlBWAlyorVcE4ucn4HEFwKVZD7rU9-Mn389o5-LCbNy576z3FIPs3R9DQsyc5xSNQkR-OcqRnHPlpz7PIlOQumz_7qL1fkbfP4un4qm-ftbv3QlJYrmEuvRN1hQC0tC4oxAK7QOeG4d5WXXEutpGbuQCM_jEZ0ASqGNXZ1cMbiitz8_tppyHnyoR2nuDfTV8ugPZq3_8zxB9X5S5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized quantum exponential function and its applications</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Silindir, Burcu ; Yantir, Ahmet</creator><creatorcontrib>Silindir, Burcu ; Yantir, Ahmet</creatorcontrib><description>This article aims to present (q; h)-analogue of exponential function which unifies, extends hand q-exponential functions in a convenient and efficient form. For this purpose, we introduce generalized quantum binomial which serves as an analogue of an ordinary polynomial. We state (q,h)-analogue of Taylor series and introduce generalized quantum exponential function which is determined by Taylor series in generalized quantum binomial. Furthermore, we prove existence and uniqueness theorem for a first order, linear, homogeneous IVP whose solution produces an infinite product form for generalized quantum exponential function. We conclude that both representations of generalized quantum exponential function are equivalent. We illustrate our results by ordinary and partial difference equations. Finally, we present a generic dynamic wave equation which admits generalized trigonometric, hyperbolic type of solutions and produces various kinds of partial differential/difference equations. nema</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1915907S</identifier><language>eng</language><ispartof>Filomat, 2019, Vol.33 (15), p.4907-4922</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-e748b3f396c1f71100273dd4d2ed5e629697691dc2732002a4bf051383b8fdac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Silindir, Burcu</creatorcontrib><creatorcontrib>Yantir, Ahmet</creatorcontrib><title>Generalized quantum exponential function and its applications</title><title>Filomat</title><description>This article aims to present (q; h)-analogue of exponential function which unifies, extends hand q-exponential functions in a convenient and efficient form. For this purpose, we introduce generalized quantum binomial which serves as an analogue of an ordinary polynomial. We state (q,h)-analogue of Taylor series and introduce generalized quantum exponential function which is determined by Taylor series in generalized quantum binomial. Furthermore, we prove existence and uniqueness theorem for a first order, linear, homogeneous IVP whose solution produces an infinite product form for generalized quantum exponential function. We conclude that both representations of generalized quantum exponential function are equivalent. We illustrate our results by ordinary and partial difference equations. Finally, we present a generic dynamic wave equation which admits generalized trigonometric, hyperbolic type of solutions and produces various kinds of partial differential/difference equations. nema</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNj01LxDAURYMoWEdX_oHspfqSlybNwoUMzjhQcKGuS5oPiHTS2rSg_npn0IWrC_ceLhxCrhnccq7ru82uYZpVGtTLCSm4AFmCRjwlBWAlyorVcE4ucn4HEFwKVZD7rU9-Mn389o5-LCbNy576z3FIPs3R9DQsyc5xSNQkR-OcqRnHPlpz7PIlOQumz_7qL1fkbfP4un4qm-ftbv3QlJYrmEuvRN1hQC0tC4oxAK7QOeG4d5WXXEutpGbuQCM_jEZ0ASqGNXZ1cMbiitz8_tppyHnyoR2nuDfTV8ugPZq3_8zxB9X5S5o</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Silindir, Burcu</creator><creator>Yantir, Ahmet</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>Generalized quantum exponential function and its applications</title><author>Silindir, Burcu ; Yantir, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e748b3f396c1f71100273dd4d2ed5e629697691dc2732002a4bf051383b8fdac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silindir, Burcu</creatorcontrib><creatorcontrib>Yantir, Ahmet</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silindir, Burcu</au><au>Yantir, Ahmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized quantum exponential function and its applications</atitle><jtitle>Filomat</jtitle><date>2019</date><risdate>2019</risdate><volume>33</volume><issue>15</issue><spage>4907</spage><epage>4922</epage><pages>4907-4922</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>This article aims to present (q; h)-analogue of exponential function which unifies, extends hand q-exponential functions in a convenient and efficient form. For this purpose, we introduce generalized quantum binomial which serves as an analogue of an ordinary polynomial. We state (q,h)-analogue of Taylor series and introduce generalized quantum exponential function which is determined by Taylor series in generalized quantum binomial. Furthermore, we prove existence and uniqueness theorem for a first order, linear, homogeneous IVP whose solution produces an infinite product form for generalized quantum exponential function. We conclude that both representations of generalized quantum exponential function are equivalent. We illustrate our results by ordinary and partial difference equations. Finally, we present a generic dynamic wave equation which admits generalized trigonometric, hyperbolic type of solutions and produces various kinds of partial differential/difference equations. nema</abstract><doi>10.2298/FIL1915907S</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2019, Vol.33 (15), p.4907-4922
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL1915907S
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
title Generalized quantum exponential function and its applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20quantum%20exponential%20function%20and%20its%20applications&rft.jtitle=Filomat&rft.au=Silindir,%20Burcu&rft.date=2019&rft.volume=33&rft.issue=15&rft.spage=4907&rft.epage=4922&rft.pages=4907-4922&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1915907S&rft_dat=%3Ccrossref%3E10_2298_FIL1915907S%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true