On involutes of order k of a null Cartan curve in Minkowski spaces

In this paper, we define an involute and an evolving involute of order k of a null Cartan curve in Minkowski space En1 for n ? 3 and 1 ? k ? n-1. In relation to that, we prove that if a null Cartan helix has a null Cartan involute of order 1 or 2, then it is Bertrand null Cartan curve and its involu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2019, Vol.33 (8), p.2295-2305
Hauptverfasser: Hanif, Muhammad, Hua, Hou, Nesovic, Emilija
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2305
container_issue 8
container_start_page 2295
container_title Filomat
container_volume 33
creator Hanif, Muhammad
Hua, Hou
Nesovic, Emilija
description In this paper, we define an involute and an evolving involute of order k of a null Cartan curve in Minkowski space En1 for n ? 3 and 1 ? k ? n-1. In relation to that, we prove that if a null Cartan helix has a null Cartan involute of order 1 or 2, then it is Bertrand null Cartan curve and its involute is its Bertrand mate curve. In particular, we show that Bertrand mate curve of Bertrand null Cartan curve can also be a non-null curve and find the relationship between the Cartan frame of a null Cartan curve and the Frenet or the Cartan frame of its non-null or null Cartan involute of order 1 ? k ? 2. We show that among all null Cartan curves in E31 , only the null Cartan cubic has two families of involutes of order 1, one of which lies on B-scroll. We also give some relations between involutes of orders 1 and 2 of a null Cartan curve in Minkowski 3-space. As an application, we show that involutes of order 1 of a null Cartan curve in E31 , evolving according to null Betchov-Da Rios vortex filament equation, generate timelike Hasimoto surfaces.
doi_str_mv 10.2298/FIL1908295H
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1908295H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL1908295H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ad3502213dea6be1ea44edd682aa52ff82b851cb1bd1950f6cdd767d7fcc2c193</originalsourceid><addsrcrecordid>eNpNj0tLxDAURoMoWEdX_oHspXpz82i61OI8oDIbXZc0D6it7ZC0I_57HXTh6nyLwweHkFsG94ilfljvalaCxlJuz0iGAlQOJefnJAMuRS6ZhktyldI7gEAliow87UfajcdpWGaf6BToFJ2PtD9NQ8dlGGhl4mxGapd49D8ufenGfvpMfUfTwVifrslFMEPyN39ckbf182u1zev9Zlc91rnFAubcOC4BkXHnjWo980YI75zSaIzEEDS2WjLbstaxUkJQ1rlCFa4I1qJlJV-Ru99fG6eUog_NIXYfJn41DJpTfvMvn38D6JlNZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On involutes of order k of a null Cartan curve in Minkowski spaces</title><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Hanif, Muhammad ; Hua, Hou ; Nesovic, Emilija</creator><creatorcontrib>Hanif, Muhammad ; Hua, Hou ; Nesovic, Emilija</creatorcontrib><description>In this paper, we define an involute and an evolving involute of order k of a null Cartan curve in Minkowski space En1 for n ? 3 and 1 ? k ? n-1. In relation to that, we prove that if a null Cartan helix has a null Cartan involute of order 1 or 2, then it is Bertrand null Cartan curve and its involute is its Bertrand mate curve. In particular, we show that Bertrand mate curve of Bertrand null Cartan curve can also be a non-null curve and find the relationship between the Cartan frame of a null Cartan curve and the Frenet or the Cartan frame of its non-null or null Cartan involute of order 1 ? k ? 2. We show that among all null Cartan curves in E31 , only the null Cartan cubic has two families of involutes of order 1, one of which lies on B-scroll. We also give some relations between involutes of orders 1 and 2 of a null Cartan curve in Minkowski 3-space. As an application, we show that involutes of order 1 of a null Cartan curve in E31 , evolving according to null Betchov-Da Rios vortex filament equation, generate timelike Hasimoto surfaces.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1908295H</identifier><language>eng</language><ispartof>Filomat, 2019, Vol.33 (8), p.2295-2305</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-ad3502213dea6be1ea44edd682aa52ff82b851cb1bd1950f6cdd767d7fcc2c193</citedby><orcidid>0000-0003-3600-0486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Hanif, Muhammad</creatorcontrib><creatorcontrib>Hua, Hou</creatorcontrib><creatorcontrib>Nesovic, Emilija</creatorcontrib><title>On involutes of order k of a null Cartan curve in Minkowski spaces</title><title>Filomat</title><description>In this paper, we define an involute and an evolving involute of order k of a null Cartan curve in Minkowski space En1 for n ? 3 and 1 ? k ? n-1. In relation to that, we prove that if a null Cartan helix has a null Cartan involute of order 1 or 2, then it is Bertrand null Cartan curve and its involute is its Bertrand mate curve. In particular, we show that Bertrand mate curve of Bertrand null Cartan curve can also be a non-null curve and find the relationship between the Cartan frame of a null Cartan curve and the Frenet or the Cartan frame of its non-null or null Cartan involute of order 1 ? k ? 2. We show that among all null Cartan curves in E31 , only the null Cartan cubic has two families of involutes of order 1, one of which lies on B-scroll. We also give some relations between involutes of orders 1 and 2 of a null Cartan curve in Minkowski 3-space. As an application, we show that involutes of order 1 of a null Cartan curve in E31 , evolving according to null Betchov-Da Rios vortex filament equation, generate timelike Hasimoto surfaces.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLxDAURoMoWEdX_oHspXpz82i61OI8oDIbXZc0D6it7ZC0I_57HXTh6nyLwweHkFsG94ilfljvalaCxlJuz0iGAlQOJefnJAMuRS6ZhktyldI7gEAliow87UfajcdpWGaf6BToFJ2PtD9NQ8dlGGhl4mxGapd49D8ufenGfvpMfUfTwVifrslFMEPyN39ckbf182u1zev9Zlc91rnFAubcOC4BkXHnjWo980YI75zSaIzEEDS2WjLbstaxUkJQ1rlCFa4I1qJlJV-Ru99fG6eUog_NIXYfJn41DJpTfvMvn38D6JlNZw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Hanif, Muhammad</creator><creator>Hua, Hou</creator><creator>Nesovic, Emilija</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3600-0486</orcidid></search><sort><creationdate>2019</creationdate><title>On involutes of order k of a null Cartan curve in Minkowski spaces</title><author>Hanif, Muhammad ; Hua, Hou ; Nesovic, Emilija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ad3502213dea6be1ea44edd682aa52ff82b851cb1bd1950f6cdd767d7fcc2c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanif, Muhammad</creatorcontrib><creatorcontrib>Hua, Hou</creatorcontrib><creatorcontrib>Nesovic, Emilija</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanif, Muhammad</au><au>Hua, Hou</au><au>Nesovic, Emilija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On involutes of order k of a null Cartan curve in Minkowski spaces</atitle><jtitle>Filomat</jtitle><date>2019</date><risdate>2019</risdate><volume>33</volume><issue>8</issue><spage>2295</spage><epage>2305</epage><pages>2295-2305</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this paper, we define an involute and an evolving involute of order k of a null Cartan curve in Minkowski space En1 for n ? 3 and 1 ? k ? n-1. In relation to that, we prove that if a null Cartan helix has a null Cartan involute of order 1 or 2, then it is Bertrand null Cartan curve and its involute is its Bertrand mate curve. In particular, we show that Bertrand mate curve of Bertrand null Cartan curve can also be a non-null curve and find the relationship between the Cartan frame of a null Cartan curve and the Frenet or the Cartan frame of its non-null or null Cartan involute of order 1 ? k ? 2. We show that among all null Cartan curves in E31 , only the null Cartan cubic has two families of involutes of order 1, one of which lies on B-scroll. We also give some relations between involutes of orders 1 and 2 of a null Cartan curve in Minkowski 3-space. As an application, we show that involutes of order 1 of a null Cartan curve in E31 , evolving according to null Betchov-Da Rios vortex filament equation, generate timelike Hasimoto surfaces.</abstract><doi>10.2298/FIL1908295H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3600-0486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2019, Vol.33 (8), p.2295-2305
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL1908295H
source JSTOR; EZB Electronic Journals Library
title On involutes of order k of a null Cartan curve in Minkowski spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20involutes%20of%20order%20k%20of%20a%20null%20Cartan%20curve%20in%20Minkowski%20spaces&rft.jtitle=Filomat&rft.au=Hanif,%20Muhammad&rft.date=2019&rft.volume=33&rft.issue=8&rft.spage=2295&rft.epage=2305&rft.pages=2295-2305&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1908295H&rft_dat=%3Ccrossref%3E10_2298_FIL1908295H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true