L-classical d-orthogonal polynomial sets of Sheffer type

In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L being a lowering operator commutating with the derivative operator D and belonging to {D,eD-1, sin(D)}. For the first case we state a (d+1)-order differential equation satisfied by the corresponding polyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2019, Vol.33 (3), p.881-895
Hauptverfasser: Cheikh, Youssèf, Gam, Inès
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 895
container_issue 3
container_start_page 881
container_title Filomat
container_volume 33
creator Cheikh, Youssèf
Gam, Inès
description In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L being a lowering operator commutating with the derivative operator D and belonging to {D,eD-1, sin(D)}. For the first case we state a (d+1)-order differential equation satisfied by the corresponding polynomials. We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified as L-classical orthogonal polynomial sets. nema
doi_str_mv 10.2298/FIL1903881C
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1903881C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL1903881C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e28a66e57ae8cf7e860e712b6823ca8cb67c9fda86c5933d14431117c49df8993</originalsourceid><addsrcrecordid>eNpNj7tOxDAURC0EEmGh4gfSI8P1I_Z1iSIWVopEAdSR17lmg7LrKE6TvycICqqZaY7mMHYr4F5Khw_bXSMcKERRn7FCajAcnFLnrABVaV4JhEt2lfMXgJZG24Jhw8Pgc-6DH8qOp2k-pM90WseYhuWUjv1aM825TLF8O1CMNJXzMtI1u4h-yHTzlxv2sX16r1948_q8qx9XrLQwc5LojaHKesIQLaEBskLuDUoVPIa9scHFzqMJ1fq0E1orIYQN2nURnVMbdvfLDVPKeaLYjlN_9NPSCmh_pNt_0uobp1tJQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>L-classical d-orthogonal polynomial sets of Sheffer type</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Cheikh, Youssèf ; Gam, Inès</creator><creatorcontrib>Cheikh, Youssèf ; Gam, Inès</creatorcontrib><description>In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L being a lowering operator commutating with the derivative operator D and belonging to {D,eD-1, sin(D)}. For the first case we state a (d+1)-order differential equation satisfied by the corresponding polynomials. We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified as L-classical orthogonal polynomial sets. nema</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1903881C</identifier><language>eng</language><ispartof>Filomat, 2019, Vol.33 (3), p.881-895</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-e28a66e57ae8cf7e860e712b6823ca8cb67c9fda86c5933d14431117c49df8993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Cheikh, Youssèf</creatorcontrib><creatorcontrib>Gam, Inès</creatorcontrib><title>L-classical d-orthogonal polynomial sets of Sheffer type</title><title>Filomat</title><description>In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L being a lowering operator commutating with the derivative operator D and belonging to {D,eD-1, sin(D)}. For the first case we state a (d+1)-order differential equation satisfied by the corresponding polynomials. We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified as L-classical orthogonal polynomial sets. nema</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNj7tOxDAURC0EEmGh4gfSI8P1I_Z1iSIWVopEAdSR17lmg7LrKE6TvycICqqZaY7mMHYr4F5Khw_bXSMcKERRn7FCajAcnFLnrABVaV4JhEt2lfMXgJZG24Jhw8Pgc-6DH8qOp2k-pM90WseYhuWUjv1aM825TLF8O1CMNJXzMtI1u4h-yHTzlxv2sX16r1948_q8qx9XrLQwc5LojaHKesIQLaEBskLuDUoVPIa9scHFzqMJ1fq0E1orIYQN2nURnVMbdvfLDVPKeaLYjlN_9NPSCmh_pNt_0uobp1tJQg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cheikh, Youssèf</creator><creator>Gam, Inès</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>L-classical d-orthogonal polynomial sets of Sheffer type</title><author>Cheikh, Youssèf ; Gam, Inès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e28a66e57ae8cf7e860e712b6823ca8cb67c9fda86c5933d14431117c49df8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheikh, Youssèf</creatorcontrib><creatorcontrib>Gam, Inès</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheikh, Youssèf</au><au>Gam, Inès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L-classical d-orthogonal polynomial sets of Sheffer type</atitle><jtitle>Filomat</jtitle><date>2019</date><risdate>2019</risdate><volume>33</volume><issue>3</issue><spage>881</spage><epage>895</epage><pages>881-895</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L being a lowering operator commutating with the derivative operator D and belonging to {D,eD-1, sin(D)}. For the first case we state a (d+1)-order differential equation satisfied by the corresponding polynomials. We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified as L-classical orthogonal polynomial sets. nema</abstract><doi>10.2298/FIL1903881C</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2019, Vol.33 (3), p.881-895
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL1903881C
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy
title L-classical d-orthogonal polynomial sets of Sheffer type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L-classical%20d-orthogonal%20polynomial%20sets%20of%20Sheffer%20type&rft.jtitle=Filomat&rft.au=Cheikh,%20Youss%C3%A8f&rft.date=2019&rft.volume=33&rft.issue=3&rft.spage=881&rft.epage=895&rft.pages=881-895&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1903881C&rft_dat=%3Ccrossref%3E10_2298_FIL1903881C%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true