About solvability of some boundary value problems for poisson equation in the ball

In the paper we study properties of some integro - differential operators of fractional order. As an application of the properties of these operators for Poisson equation we examine questions on solvability of a fractional analogue of the Neumann problem and analogues of periodic boundary value prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2018, Vol.32 (3), p.939-946
Hauptverfasser: Koshanova, Maira, Turmetov, Batirkhan, Usmanov, Kairat
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 946
container_issue 3
container_start_page 939
container_title Filomat
container_volume 32
creator Koshanova, Maira
Turmetov, Batirkhan
Usmanov, Kairat
description In the paper we study properties of some integro - differential operators of fractional order. As an application of the properties of these operators for Poisson equation we examine questions on solvability of a fractional analogue of the Neumann problem and analogues of periodic boundary value problems for circular domains. The exact conditions for solvability of these problems are found. nema
doi_str_mv 10.2298/FIL1803939K
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1803939K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL1803939K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f886241fb4fa03d2f88b840d69b5ea3a6c79c018e0fb50a2a8e5a3f114dfd6e03</originalsourceid><addsrcrecordid>eNpNUM1KxDAYDKJgXT35ArlL9ctP0_S4LK67WBBEzyVpE4ykzZq0C_v2RvTgaWYYZhgGoVsC95Q28mG7b4kE1rDm-QwVlIMooWHsHBXAKl5W2bxEVyl9AnAqeF2g17UOy4xT8EelnXfzCQeb5WhwNqZBxRM-Kr8YfIhBezMmbEPEh-BSChM2X4uaXSZuwvNHzijvr9GFVT6Zmz9cofft49tmV7YvT_vNui17WsNcWikF5cRqbhWwgWatJYdBNLoyiinR100PRBqwugJFlTSVYpYQPthBGGArdPfb28eQUjS2O0Q35sEdge7nju7fHewbjAJT-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>About solvability of some boundary value problems for poisson equation in the ball</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Koshanova, Maira ; Turmetov, Batirkhan ; Usmanov, Kairat</creator><creatorcontrib>Koshanova, Maira ; Turmetov, Batirkhan ; Usmanov, Kairat</creatorcontrib><description>In the paper we study properties of some integro - differential operators of fractional order. As an application of the properties of these operators for Poisson equation we examine questions on solvability of a fractional analogue of the Neumann problem and analogues of periodic boundary value problems for circular domains. The exact conditions for solvability of these problems are found. nema</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1803939K</identifier><language>eng</language><ispartof>Filomat, 2018, Vol.32 (3), p.939-946</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-f886241fb4fa03d2f88b840d69b5ea3a6c79c018e0fb50a2a8e5a3f114dfd6e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Koshanova, Maira</creatorcontrib><creatorcontrib>Turmetov, Batirkhan</creatorcontrib><creatorcontrib>Usmanov, Kairat</creatorcontrib><title>About solvability of some boundary value problems for poisson equation in the ball</title><title>Filomat</title><description>In the paper we study properties of some integro - differential operators of fractional order. As an application of the properties of these operators for Poisson equation we examine questions on solvability of a fractional analogue of the Neumann problem and analogues of periodic boundary value problems for circular domains. The exact conditions for solvability of these problems are found. nema</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNUM1KxDAYDKJgXT35ArlL9ctP0_S4LK67WBBEzyVpE4ykzZq0C_v2RvTgaWYYZhgGoVsC95Q28mG7b4kE1rDm-QwVlIMooWHsHBXAKl5W2bxEVyl9AnAqeF2g17UOy4xT8EelnXfzCQeb5WhwNqZBxRM-Kr8YfIhBezMmbEPEh-BSChM2X4uaXSZuwvNHzijvr9GFVT6Zmz9cofft49tmV7YvT_vNui17WsNcWikF5cRqbhWwgWatJYdBNLoyiinR100PRBqwugJFlTSVYpYQPthBGGArdPfb28eQUjS2O0Q35sEdge7nju7fHewbjAJT-A</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Koshanova, Maira</creator><creator>Turmetov, Batirkhan</creator><creator>Usmanov, Kairat</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>About solvability of some boundary value problems for poisson equation in the ball</title><author>Koshanova, Maira ; Turmetov, Batirkhan ; Usmanov, Kairat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f886241fb4fa03d2f88b840d69b5ea3a6c79c018e0fb50a2a8e5a3f114dfd6e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koshanova, Maira</creatorcontrib><creatorcontrib>Turmetov, Batirkhan</creatorcontrib><creatorcontrib>Usmanov, Kairat</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koshanova, Maira</au><au>Turmetov, Batirkhan</au><au>Usmanov, Kairat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About solvability of some boundary value problems for poisson equation in the ball</atitle><jtitle>Filomat</jtitle><date>2018</date><risdate>2018</risdate><volume>32</volume><issue>3</issue><spage>939</spage><epage>946</epage><pages>939-946</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In the paper we study properties of some integro - differential operators of fractional order. As an application of the properties of these operators for Poisson equation we examine questions on solvability of a fractional analogue of the Neumann problem and analogues of periodic boundary value problems for circular domains. The exact conditions for solvability of these problems are found. nema</abstract><doi>10.2298/FIL1803939K</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2018, Vol.32 (3), p.939-946
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL1803939K
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title About solvability of some boundary value problems for poisson equation in the ball
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20solvability%20of%20some%20boundary%20value%20problems%20for%20poisson%20equation%20in%20the%20ball&rft.jtitle=Filomat&rft.au=Koshanova,%20Maira&rft.date=2018&rft.volume=32&rft.issue=3&rft.spage=939&rft.epage=946&rft.pages=939-946&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1803939K&rft_dat=%3Ccrossref%3E10_2298_FIL1803939K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true