Large deviations for stochastic integrodifferential equations of the Itô type with multiple randomness

A Freidlin-Wentzell type large deviation principle is derived for a class of It? type stochastic integrodifferential equations driven by a finite number of multiplicative noises of the Gaussian type. The weak convergence approach is used here to prove the Laplace principle, equivalently large deviat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2018, Vol.32 (2), p.473-487
Hauptverfasser: Haseena, A., Suvinthra, M., Annapoorani, N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 2
container_start_page 473
container_title Filomat
container_volume 32
creator Haseena, A.
Suvinthra, M.
Annapoorani, N.
description A Freidlin-Wentzell type large deviation principle is derived for a class of It? type stochastic integrodifferential equations driven by a finite number of multiplicative noises of the Gaussian type. The weak convergence approach is used here to prove the Laplace principle, equivalently large deviation principle. nema
doi_str_mv 10.2298/FIL1802473H
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1802473H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL1802473H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4d2bd7503b12ac4d4373b62667cf702242b8af3bc5ac35091abb77c13a2c7ba3</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqUw8QPeUcB-duJkRBWlkSKxdI-eHbs1SuNiu6D-F3_AjwGiA9MZ7tEdDiG3nN0DNPXDsu14zUAqsTojM5CsKlgjxDmZMVHKovwZL8lVSq-MSaikmpFNh3Fj6WDfPWYfpkRdiDTlYLaYsjfUT9luYhi8czbaKXscqX07nOTgaN5a2uavT5qPe0s_fN7S3WHMfj9aGnEawm6yKV2TC4djsjcnzsl6-bRerIru5bldPHaFAcVyIQfQgyqZ0BzQyEEKJXQFVaWMUwxAgq7RCW1KNKJkDUetlTJcIBilUczJ3d-tiSGlaF2_j36H8dhz1v8m6v8lEt9yu1yC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large deviations for stochastic integrodifferential equations of the Itô type with multiple randomness</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Haseena, A. ; Suvinthra, M. ; Annapoorani, N.</creator><creatorcontrib>Haseena, A. ; Suvinthra, M. ; Annapoorani, N.</creatorcontrib><description>A Freidlin-Wentzell type large deviation principle is derived for a class of It? type stochastic integrodifferential equations driven by a finite number of multiplicative noises of the Gaussian type. The weak convergence approach is used here to prove the Laplace principle, equivalently large deviation principle. nema</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1802473H</identifier><language>eng</language><ispartof>Filomat, 2018, Vol.32 (2), p.473-487</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-4d2bd7503b12ac4d4373b62667cf702242b8af3bc5ac35091abb77c13a2c7ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Haseena, A.</creatorcontrib><creatorcontrib>Suvinthra, M.</creatorcontrib><creatorcontrib>Annapoorani, N.</creatorcontrib><title>Large deviations for stochastic integrodifferential equations of the Itô type with multiple randomness</title><title>Filomat</title><description>A Freidlin-Wentzell type large deviation principle is derived for a class of It? type stochastic integrodifferential equations driven by a finite number of multiplicative noises of the Gaussian type. The weak convergence approach is used here to prove the Laplace principle, equivalently large deviation principle. nema</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EEqUw8QPeUcB-duJkRBWlkSKxdI-eHbs1SuNiu6D-F3_AjwGiA9MZ7tEdDiG3nN0DNPXDsu14zUAqsTojM5CsKlgjxDmZMVHKovwZL8lVSq-MSaikmpFNh3Fj6WDfPWYfpkRdiDTlYLaYsjfUT9luYhi8czbaKXscqX07nOTgaN5a2uavT5qPe0s_fN7S3WHMfj9aGnEawm6yKV2TC4djsjcnzsl6-bRerIru5bldPHaFAcVyIQfQgyqZ0BzQyEEKJXQFVaWMUwxAgq7RCW1KNKJkDUetlTJcIBilUczJ3d-tiSGlaF2_j36H8dhz1v8m6v8lEt9yu1yC</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Haseena, A.</creator><creator>Suvinthra, M.</creator><creator>Annapoorani, N.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Large deviations for stochastic integrodifferential equations of the Itô type with multiple randomness</title><author>Haseena, A. ; Suvinthra, M. ; Annapoorani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4d2bd7503b12ac4d4373b62667cf702242b8af3bc5ac35091abb77c13a2c7ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haseena, A.</creatorcontrib><creatorcontrib>Suvinthra, M.</creatorcontrib><creatorcontrib>Annapoorani, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haseena, A.</au><au>Suvinthra, M.</au><au>Annapoorani, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large deviations for stochastic integrodifferential equations of the Itô type with multiple randomness</atitle><jtitle>Filomat</jtitle><date>2018</date><risdate>2018</risdate><volume>32</volume><issue>2</issue><spage>473</spage><epage>487</epage><pages>473-487</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>A Freidlin-Wentzell type large deviation principle is derived for a class of It? type stochastic integrodifferential equations driven by a finite number of multiplicative noises of the Gaussian type. The weak convergence approach is used here to prove the Laplace principle, equivalently large deviation principle. nema</abstract><doi>10.2298/FIL1802473H</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2018, Vol.32 (2), p.473-487
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL1802473H
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
title Large deviations for stochastic integrodifferential equations of the Itô type with multiple randomness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20deviations%20for%20stochastic%20integrodifferential%20equations%20of%20the%20It%C3%B4%20type%20with%20multiple%20randomness&rft.jtitle=Filomat&rft.au=Haseena,%20A.&rft.date=2018&rft.volume=32&rft.issue=2&rft.spage=473&rft.epage=487&rft.pages=473-487&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1802473H&rft_dat=%3Ccrossref%3E10_2298_FIL1802473H%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true