Lipschitz-type spaces of pluriharmonic mappings
In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corr...
Gespeichert in:
Veröffentlicht in: | Filomat 2013-01, Vol.27 (4), p.693-702 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 4 |
container_start_page | 693 |
container_title | Filomat |
container_volume | 27 |
creator | Qiao, J. Wang, X. |
description | In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović. |
doi_str_mv | 10.2298/FIL1304693Q |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1304693Q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24896398</jstor_id><sourcerecordid>24896398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dd248897eb0c84af9e2244ec6b5f56e1f9ad90af6ff733fc3ddf1b1b24124ebc3</originalsourceid><addsrcrecordid>eNpNj0FLwzAYhoMoWKcnz0LvEvclX5omRxluDgoi6LmkaeIy1jUk9TB_vZOJeHovDy_PQ8gtgwfOtZov1w1DEFLj6xkpuABJQSOekwKwErRiCi7JVc5bAMGlqAsyb0LMdhOmLzodoitzNNblcvRl3H2msDFpGPfBloOJMew_8jW58GaX3c3vzsj78ult8Uybl9V68dhQyzWfaN9zoZSuXQdWCeO141wIZ2VX-Uo65rXpNRgvva8RvcW-96xjHReMC9dZnJH7069NY87J-TamMJh0aBm0P63tv9YjfXeit3ka0x96dNAStcJv7PdRXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lipschitz-type spaces of pluriharmonic mappings</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qiao, J. ; Wang, X.</creator><creatorcontrib>Qiao, J. ; Wang, X.</creatorcontrib><description>In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1304693Q</identifier><language>eng</language><publisher>Faculty of Sciences and Mathematics, University of Niš</publisher><subject>Analytic functions ; College mathematics ; Mathematical functions</subject><ispartof>Filomat, 2013-01, Vol.27 (4), p.693-702</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dd248897eb0c84af9e2244ec6b5f56e1f9ad90af6ff733fc3ddf1b1b24124ebc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24896398$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24896398$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Qiao, J.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><title>Lipschitz-type spaces of pluriharmonic mappings</title><title>Filomat</title><description>In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović.</description><subject>Analytic functions</subject><subject>College mathematics</subject><subject>Mathematical functions</subject><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNj0FLwzAYhoMoWKcnz0LvEvclX5omRxluDgoi6LmkaeIy1jUk9TB_vZOJeHovDy_PQ8gtgwfOtZov1w1DEFLj6xkpuABJQSOekwKwErRiCi7JVc5bAMGlqAsyb0LMdhOmLzodoitzNNblcvRl3H2msDFpGPfBloOJMew_8jW58GaX3c3vzsj78ult8Uybl9V68dhQyzWfaN9zoZSuXQdWCeO141wIZ2VX-Uo65rXpNRgvva8RvcW-96xjHReMC9dZnJH7069NY87J-TamMJh0aBm0P63tv9YjfXeit3ka0x96dNAStcJv7PdRXw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Qiao, J.</creator><creator>Wang, X.</creator><general>Faculty of Sciences and Mathematics, University of Niš</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130101</creationdate><title>Lipschitz-type spaces of pluriharmonic mappings</title><author>Qiao, J. ; Wang, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dd248897eb0c84af9e2244ec6b5f56e1f9ad90af6ff733fc3ddf1b1b24124ebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytic functions</topic><topic>College mathematics</topic><topic>Mathematical functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, J.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, J.</au><au>Wang, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz-type spaces of pluriharmonic mappings</atitle><jtitle>Filomat</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>27</volume><issue>4</issue><spage>693</spage><epage>702</epage><pages>693-702</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović.</abstract><pub>Faculty of Sciences and Mathematics, University of Niš</pub><doi>10.2298/FIL1304693Q</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2013-01, Vol.27 (4), p.693-702 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL1304693Q |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | Analytic functions College mathematics Mathematical functions |
title | Lipschitz-type spaces of pluriharmonic mappings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz-type%20spaces%20of%20pluriharmonic%20mappings&rft.jtitle=Filomat&rft.au=Qiao,%20J.&rft.date=2013-01-01&rft.volume=27&rft.issue=4&rft.spage=693&rft.epage=702&rft.pages=693-702&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1304693Q&rft_dat=%3Cjstor_cross%3E24896398%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24896398&rfr_iscdi=true |