Lipschitz-type spaces of pluriharmonic mappings

In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2013-01, Vol.27 (4), p.693-702
Hauptverfasser: Qiao, J., Wang, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 702
container_issue 4
container_start_page 693
container_title Filomat
container_volume 27
creator Qiao, J.
Wang, X.
description In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović.
doi_str_mv 10.2298/FIL1304693Q
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1304693Q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24896398</jstor_id><sourcerecordid>24896398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dd248897eb0c84af9e2244ec6b5f56e1f9ad90af6ff733fc3ddf1b1b24124ebc3</originalsourceid><addsrcrecordid>eNpNj0FLwzAYhoMoWKcnz0LvEvclX5omRxluDgoi6LmkaeIy1jUk9TB_vZOJeHovDy_PQ8gtgwfOtZov1w1DEFLj6xkpuABJQSOekwKwErRiCi7JVc5bAMGlqAsyb0LMdhOmLzodoitzNNblcvRl3H2msDFpGPfBloOJMew_8jW58GaX3c3vzsj78ult8Uybl9V68dhQyzWfaN9zoZSuXQdWCeO141wIZ2VX-Uo65rXpNRgvva8RvcW-96xjHReMC9dZnJH7069NY87J-TamMJh0aBm0P63tv9YjfXeit3ka0x96dNAStcJv7PdRXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lipschitz-type spaces of pluriharmonic mappings</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Qiao, J. ; Wang, X.</creator><creatorcontrib>Qiao, J. ; Wang, X.</creatorcontrib><description>In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1304693Q</identifier><language>eng</language><publisher>Faculty of Sciences and Mathematics, University of Niš</publisher><subject>Analytic functions ; College mathematics ; Mathematical functions</subject><ispartof>Filomat, 2013-01, Vol.27 (4), p.693-702</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dd248897eb0c84af9e2244ec6b5f56e1f9ad90af6ff733fc3ddf1b1b24124ebc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24896398$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24896398$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Qiao, J.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><title>Lipschitz-type spaces of pluriharmonic mappings</title><title>Filomat</title><description>In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović.</description><subject>Analytic functions</subject><subject>College mathematics</subject><subject>Mathematical functions</subject><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNj0FLwzAYhoMoWKcnz0LvEvclX5omRxluDgoi6LmkaeIy1jUk9TB_vZOJeHovDy_PQ8gtgwfOtZov1w1DEFLj6xkpuABJQSOekwKwErRiCi7JVc5bAMGlqAsyb0LMdhOmLzodoitzNNblcvRl3H2msDFpGPfBloOJMew_8jW58GaX3c3vzsj78ult8Uybl9V68dhQyzWfaN9zoZSuXQdWCeO141wIZ2VX-Uo65rXpNRgvva8RvcW-96xjHReMC9dZnJH7069NY87J-TamMJh0aBm0P63tv9YjfXeit3ka0x96dNAStcJv7PdRXw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Qiao, J.</creator><creator>Wang, X.</creator><general>Faculty of Sciences and Mathematics, University of Niš</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130101</creationdate><title>Lipschitz-type spaces of pluriharmonic mappings</title><author>Qiao, J. ; Wang, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dd248897eb0c84af9e2244ec6b5f56e1f9ad90af6ff733fc3ddf1b1b24124ebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytic functions</topic><topic>College mathematics</topic><topic>Mathematical functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, J.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, J.</au><au>Wang, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz-type spaces of pluriharmonic mappings</atitle><jtitle>Filomat</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>27</volume><issue>4</issue><spage>693</spage><epage>702</epage><pages>693-702</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>In this paper, we discuss the pluriharmonic mappings in the n-dimensional complex space Cn. Several characterizations for pluriharmonic mappings to be in Lipschitz-type spaces are given, which are generalizations of the corresponding results for harmonic functions. Our proofs are related to the corresponding results of Gehring and Martio, Lappalainen, Mateljević, Dyakonov and Pavlović.</abstract><pub>Faculty of Sciences and Mathematics, University of Niš</pub><doi>10.2298/FIL1304693Q</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2013-01, Vol.27 (4), p.693-702
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL1304693Q
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Analytic functions
College mathematics
Mathematical functions
title Lipschitz-type spaces of pluriharmonic mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz-type%20spaces%20of%20pluriharmonic%20mappings&rft.jtitle=Filomat&rft.au=Qiao,%20J.&rft.date=2013-01-01&rft.volume=27&rft.issue=4&rft.spage=693&rft.epage=702&rft.pages=693-702&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1304693Q&rft_dat=%3Cjstor_cross%3E24896398%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24896398&rfr_iscdi=true