THEORY OF DISCRETE MUCKENHOUPT WEIGHTS AND DISCRETE RUBIO DE FRANCIA EXTRAPOLATION THEOREMS
In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete A p – Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on l ω p ( Z + ) . The results will be proved by employing the self-improving property of the discret...
Gespeichert in:
Veröffentlicht in: | Applicable analysis and discrete mathematics 2021-10, Vol.15 (2), p.295-316 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 2 |
container_start_page | 295 |
container_title | Applicable analysis and discrete mathematics |
container_volume | 15 |
creator | Saker, S. H. Agarwal, R. P. |
description | In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete A
p
– Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on
l
ω
p
(
Z
+
)
. The results will be proved by employing the self-improving property of the discrete A
p
– Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem. |
doi_str_mv | 10.2298/AADM210120017S |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2298_AADM210120017S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27090831</jstor_id><sourcerecordid>27090831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-bab2e799e9a0a0922a8ef1c95d86c1dc38abb602e294cfc48c6b48fd01c750ce3</originalsourceid><addsrcrecordid>eNpVkLtOwzAYRi0EEqGwsiH5BVJ-Ozd7NInbRLRxlTiiiCFyHEeiAhUlXXh7LkUgpm855wwfQtcE5pRyditEtqYECAUgSX2CPBpC7BOA7SnySBhRn8UBnKOLadoBRCzi3ENPOpeqesRqgbOiTiupJV436b0sc9VsNH6QxTLXNRZl9gdUzV2hcCbxohJlWggst7oSG7USulAl_k7KdX2JzgbzMrmrn52hZiF1mvsrtSxSsfJtAOTgd6ajLuHccQMGOKWGuYFYHvUstqS3ATNdFwN1lId2sCGzcReyoQdikwisC2ZofuzacT9Noxvat_H51YzvLYH265r2_zWfws1R2E2H_fhL0wQ4sIAEH1xkWS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THEORY OF DISCRETE MUCKENHOUPT WEIGHTS AND DISCRETE RUBIO DE FRANCIA EXTRAPOLATION THEOREMS</title><source>JSTOR</source><source>EZB Electronic Journals Library</source><source>JSTOR Mathematics & Business</source><creator>Saker, S. H. ; Agarwal, R. P.</creator><creatorcontrib>Saker, S. H. ; Agarwal, R. P.</creatorcontrib><description>In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete A
p
– Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on
l
ω
p
(
Z
+
)
. The results will be proved by employing the self-improving property of the discrete A
p
– Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem.</description><identifier>ISSN: 1452-8630</identifier><identifier>EISSN: 2406-100X</identifier><identifier>DOI: 10.2298/AADM210120017S</identifier><language>eng</language><publisher>University of Belgrade, Serbia</publisher><ispartof>Applicable analysis and discrete mathematics, 2021-10, Vol.15 (2), p.295-316</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-bab2e799e9a0a0922a8ef1c95d86c1dc38abb602e294cfc48c6b48fd01c750ce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27090831$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27090831$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Saker, S. H.</creatorcontrib><creatorcontrib>Agarwal, R. P.</creatorcontrib><title>THEORY OF DISCRETE MUCKENHOUPT WEIGHTS AND DISCRETE RUBIO DE FRANCIA EXTRAPOLATION THEOREMS</title><title>Applicable analysis and discrete mathematics</title><description>In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete A
p
– Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on
l
ω
p
(
Z
+
)
. The results will be proved by employing the self-improving property of the discrete A
p
– Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem.</description><issn>1452-8630</issn><issn>2406-100X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkLtOwzAYRi0EEqGwsiH5BVJ-Ozd7NInbRLRxlTiiiCFyHEeiAhUlXXh7LkUgpm855wwfQtcE5pRyditEtqYECAUgSX2CPBpC7BOA7SnySBhRn8UBnKOLadoBRCzi3ENPOpeqesRqgbOiTiupJV436b0sc9VsNH6QxTLXNRZl9gdUzV2hcCbxohJlWggst7oSG7USulAl_k7KdX2JzgbzMrmrn52hZiF1mvsrtSxSsfJtAOTgd6ajLuHccQMGOKWGuYFYHvUstqS3ATNdFwN1lId2sCGzcReyoQdikwisC2ZofuzacT9Noxvat_H51YzvLYH265r2_zWfws1R2E2H_fhL0wQ4sIAEH1xkWS8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Saker, S. H.</creator><creator>Agarwal, R. P.</creator><general>University of Belgrade, Serbia</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>THEORY OF DISCRETE MUCKENHOUPT WEIGHTS AND DISCRETE RUBIO DE FRANCIA EXTRAPOLATION THEOREMS</title><author>Saker, S. H. ; Agarwal, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-bab2e799e9a0a0922a8ef1c95d86c1dc38abb602e294cfc48c6b48fd01c750ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saker, S. H.</creatorcontrib><creatorcontrib>Agarwal, R. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Applicable analysis and discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saker, S. H.</au><au>Agarwal, R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THEORY OF DISCRETE MUCKENHOUPT WEIGHTS AND DISCRETE RUBIO DE FRANCIA EXTRAPOLATION THEOREMS</atitle><jtitle>Applicable analysis and discrete mathematics</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>295</spage><epage>316</epage><pages>295-316</pages><issn>1452-8630</issn><eissn>2406-100X</eissn><abstract>In this paper, we will prove a discrete Rubio De Francia extrapolation theorem in the theory of discrete A
p
– Muckenhoupt weights for which the discrete Hardy-Littlewood maximal operator is bounded on
l
ω
p
(
Z
+
)
. The results will be proved by employing the self-improving property of the discrete A
p
– Muckenhoupt weights and the Marcinkiewicz Interpolation Theorem.</abstract><pub>University of Belgrade, Serbia</pub><doi>10.2298/AADM210120017S</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1452-8630 |
ispartof | Applicable analysis and discrete mathematics, 2021-10, Vol.15 (2), p.295-316 |
issn | 1452-8630 2406-100X |
language | eng |
recordid | cdi_crossref_primary_10_2298_AADM210120017S |
source | JSTOR; EZB Electronic Journals Library; JSTOR Mathematics & Business |
title | THEORY OF DISCRETE MUCKENHOUPT WEIGHTS AND DISCRETE RUBIO DE FRANCIA EXTRAPOLATION THEOREMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THEORY%20OF%20DISCRETE%20MUCKENHOUPT%20WEIGHTS%20AND%20DISCRETE%20RUBIO%20DE%20FRANCIA%20EXTRAPOLATION%20THEOREMS&rft.jtitle=Applicable%20analysis%20and%20discrete%20mathematics&rft.au=Saker,%20S.%20H.&rft.date=2021-10-01&rft.volume=15&rft.issue=2&rft.spage=295&rft.epage=316&rft.pages=295-316&rft.issn=1452-8630&rft.eissn=2406-100X&rft_id=info:doi/10.2298/AADM210120017S&rft_dat=%3Cjstor_cross%3E27090831%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27090831&rfr_iscdi=true |