IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH
Online social networks have become a necessity to everyone around the world. Particularly, online social networks have enabled us to connect to one another regardless of time, for as long as we have social media and social networking as platforms for broadcasting information and communicating, respe...
Gespeichert in:
Veröffentlicht in: | Malaysian journal of computer science 2021-01, p.78-100 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | Malaysian journal of computer science |
container_volume | |
creator | Wan Ali, Wan Noor Hamiza Mohd, Masnizah Fauzi, Fariza Shirai, Kiyoaki Mahamad Noor, Muhammad Junaidi |
description | Online social networks have become a necessity to everyone around the world. Particularly, online social networks have enabled us to connect to one another regardless of time, for as long as we have social media and social networking as platforms for broadcasting information and communicating, respectively. However, this evolution has resulted in people possibly committing various cybercrimes, such as cyberbullying. To address this issue, machine learning can be utilised to counter cyberbullying in online social networks. Thus, this study proposed a framework with a set of features consisting of word and character term frequency–inverse document frequency and word embedding by using Word2vec and six types of list terms: profane words, proper nouns, negation words, ‘allness’ term, diminisher words and intensifier words. These features were divided into four groups before being fed into the linear support vector classifier to train our model using ASKfm as data set in hyperparameter tuning and over-sampling environment. Results indicated that the proposed framework provided significant outcomes, in which the highest percentage of area under curve is 99.24% and F-measure is 97.38% as performed by our trained model. |
doi_str_mv | 10.22452/mjcs.sp2021no2.6 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_22452_mjcs_sp2021no2_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_22452_mjcs_sp2021no2_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-76b70405798b659ac32e81295fc7039ae148fee47e085f2818d1e59a0455d6833</originalsourceid><addsrcrecordid>eNo9kEFugzAQRb1opaZpD9CdL0BqGxvM0iFOsAQGGajEChFipEZNE-Fu2tMHmqqbGf0_f0aaB8ALRitCKCOvp2PvVu5CEMGfZ7IK7sACYRJ6EeL0ATw6d0SIRdTHC_CjsiKVmdSVqFSuYb6FSVNIUwgjMllJA_OiUpkqb2OhNzB_k8YrxbSn9A4qDTdTLq5mETdradZ1mjazqsu5ZiJOlJYwlcLo2RBFYfLJfAL3Q_fh7PNfX4J6K6s48dJ8p2KRev30zJcXBvsQUcTCiO8DFnW9TyzHJGJDHyI_6iymfLCWhhZxNhCO-QHbKYcoY4eA-_4S4Nvdfjw7N9qhvYzvp278bjFqf4G1M7D2H1gb-FebMlkC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wan Ali, Wan Noor Hamiza ; Mohd, Masnizah ; Fauzi, Fariza ; Shirai, Kiyoaki ; Mahamad Noor, Muhammad Junaidi</creator><creatorcontrib>Wan Ali, Wan Noor Hamiza ; Mohd, Masnizah ; Fauzi, Fariza ; Shirai, Kiyoaki ; Mahamad Noor, Muhammad Junaidi</creatorcontrib><description>Online social networks have become a necessity to everyone around the world. Particularly, online social networks have enabled us to connect to one another regardless of time, for as long as we have social media and social networking as platforms for broadcasting information and communicating, respectively. However, this evolution has resulted in people possibly committing various cybercrimes, such as cyberbullying. To address this issue, machine learning can be utilised to counter cyberbullying in online social networks. Thus, this study proposed a framework with a set of features consisting of word and character term frequency–inverse document frequency and word embedding by using Word2vec and six types of list terms: profane words, proper nouns, negation words, ‘allness’ term, diminisher words and intensifier words. These features were divided into four groups before being fed into the linear support vector classifier to train our model using ASKfm as data set in hyperparameter tuning and over-sampling environment. Results indicated that the proposed framework provided significant outcomes, in which the highest percentage of area under curve is 99.24% and F-measure is 97.38% as performed by our trained model.</description><identifier>ISSN: 0127-9084</identifier><identifier>DOI: 10.22452/mjcs.sp2021no2.6</identifier><language>eng</language><ispartof>Malaysian journal of computer science, 2021-01, p.78-100</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-76b70405798b659ac32e81295fc7039ae148fee47e085f2818d1e59a0455d6833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wan Ali, Wan Noor Hamiza</creatorcontrib><creatorcontrib>Mohd, Masnizah</creatorcontrib><creatorcontrib>Fauzi, Fariza</creatorcontrib><creatorcontrib>Shirai, Kiyoaki</creatorcontrib><creatorcontrib>Mahamad Noor, Muhammad Junaidi</creatorcontrib><title>IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH</title><title>Malaysian journal of computer science</title><description>Online social networks have become a necessity to everyone around the world. Particularly, online social networks have enabled us to connect to one another regardless of time, for as long as we have social media and social networking as platforms for broadcasting information and communicating, respectively. However, this evolution has resulted in people possibly committing various cybercrimes, such as cyberbullying. To address this issue, machine learning can be utilised to counter cyberbullying in online social networks. Thus, this study proposed a framework with a set of features consisting of word and character term frequency–inverse document frequency and word embedding by using Word2vec and six types of list terms: profane words, proper nouns, negation words, ‘allness’ term, diminisher words and intensifier words. These features were divided into four groups before being fed into the linear support vector classifier to train our model using ASKfm as data set in hyperparameter tuning and over-sampling environment. Results indicated that the proposed framework provided significant outcomes, in which the highest percentage of area under curve is 99.24% and F-measure is 97.38% as performed by our trained model.</description><issn>0127-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFugzAQRb1opaZpD9CdL0BqGxvM0iFOsAQGGajEChFipEZNE-Fu2tMHmqqbGf0_f0aaB8ALRitCKCOvp2PvVu5CEMGfZ7IK7sACYRJ6EeL0ATw6d0SIRdTHC_CjsiKVmdSVqFSuYb6FSVNIUwgjMllJA_OiUpkqb2OhNzB_k8YrxbSn9A4qDTdTLq5mETdradZ1mjazqsu5ZiJOlJYwlcLo2RBFYfLJfAL3Q_fh7PNfX4J6K6s48dJ8p2KRev30zJcXBvsQUcTCiO8DFnW9TyzHJGJDHyI_6iymfLCWhhZxNhCO-QHbKYcoY4eA-_4S4Nvdfjw7N9qhvYzvp278bjFqf4G1M7D2H1gb-FebMlkC</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wan Ali, Wan Noor Hamiza</creator><creator>Mohd, Masnizah</creator><creator>Fauzi, Fariza</creator><creator>Shirai, Kiyoaki</creator><creator>Mahamad Noor, Muhammad Junaidi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH</title><author>Wan Ali, Wan Noor Hamiza ; Mohd, Masnizah ; Fauzi, Fariza ; Shirai, Kiyoaki ; Mahamad Noor, Muhammad Junaidi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-76b70405798b659ac32e81295fc7039ae148fee47e085f2818d1e59a0455d6833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan Ali, Wan Noor Hamiza</creatorcontrib><creatorcontrib>Mohd, Masnizah</creatorcontrib><creatorcontrib>Fauzi, Fariza</creatorcontrib><creatorcontrib>Shirai, Kiyoaki</creatorcontrib><creatorcontrib>Mahamad Noor, Muhammad Junaidi</creatorcontrib><collection>CrossRef</collection><jtitle>Malaysian journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan Ali, Wan Noor Hamiza</au><au>Mohd, Masnizah</au><au>Fauzi, Fariza</au><au>Shirai, Kiyoaki</au><au>Mahamad Noor, Muhammad Junaidi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH</atitle><jtitle>Malaysian journal of computer science</jtitle><date>2021-01-01</date><risdate>2021</risdate><spage>78</spage><epage>100</epage><pages>78-100</pages><issn>0127-9084</issn><abstract>Online social networks have become a necessity to everyone around the world. Particularly, online social networks have enabled us to connect to one another regardless of time, for as long as we have social media and social networking as platforms for broadcasting information and communicating, respectively. However, this evolution has resulted in people possibly committing various cybercrimes, such as cyberbullying. To address this issue, machine learning can be utilised to counter cyberbullying in online social networks. Thus, this study proposed a framework with a set of features consisting of word and character term frequency–inverse document frequency and word embedding by using Word2vec and six types of list terms: profane words, proper nouns, negation words, ‘allness’ term, diminisher words and intensifier words. These features were divided into four groups before being fed into the linear support vector classifier to train our model using ASKfm as data set in hyperparameter tuning and over-sampling environment. Results indicated that the proposed framework provided significant outcomes, in which the highest percentage of area under curve is 99.24% and F-measure is 97.38% as performed by our trained model.</abstract><doi>10.22452/mjcs.sp2021no2.6</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0127-9084 |
ispartof | Malaysian journal of computer science, 2021-01, p.78-100 |
issn | 0127-9084 |
language | eng |
recordid | cdi_crossref_primary_10_22452_mjcs_sp2021no2_6 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | IMPLEMENTATION OF HYPERPARAMETER OPTIMISATION AND OVER-SAMPLING IN DETECTING CYBERBULLYING USING MACHINE LEARNING APPROACH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMPLEMENTATION%20OF%20HYPERPARAMETER%20OPTIMISATION%20AND%20OVER-SAMPLING%20IN%20DETECTING%20CYBERBULLYING%20USING%20MACHINE%20LEARNING%20APPROACH&rft.jtitle=Malaysian%20journal%20of%20computer%20science&rft.au=Wan%20Ali,%20Wan%20Noor%20Hamiza&rft.date=2021-01-01&rft.spage=78&rft.epage=100&rft.pages=78-100&rft.issn=0127-9084&rft_id=info:doi/10.22452/mjcs.sp2021no2.6&rft_dat=%3Ccrossref%3E10_22452_mjcs_sp2021no2_6%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |