MODELING, OPTIMIZATION AND CONTROL OF A FCC UNIT USING NEURAL NETWORKS AND EVOLUTIONARY METHODS

This paper presents a simulation study of the use of an artificial neural network (ANN) model for control and optimization of a Fluidized-Bed Catalytic Cracking reactor-regenerator system (FCC). This case study, whose phenomenological model was validated with industrial data, is a multivariable and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engevista 2013-07, Vol.16 (1), p.70
Hauptverfasser: Bispo, Vitor Diego da Silva, Silva, Elina Sandra Ramos de Lira e, Meleiro, Luiz Augusto Da Cruz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 70
container_title Engevista
container_volume 16
creator Bispo, Vitor Diego da Silva
Silva, Elina Sandra Ramos de Lira e
Meleiro, Luiz Augusto Da Cruz
description This paper presents a simulation study of the use of an artificial neural network (ANN) model for control and optimization of a Fluidized-Bed Catalytic Cracking reactor-regenerator system (FCC). This case study, whose phenomenological model was validated with industrial data, is a multivariable and nonlinear process with strong interactions among the operational variables. In order to obtain a dynamic model of the FCC system, a feedforward ANN model was identified. Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) evolutionary methods were used to set optimal operating conditions for the FCC, and both algorithms presented good and consistent results for typical FCC optimization problems. The neural model was also used in the design of a Model-Based Predictive Control (MPC) for the FCC process. It was showed that the ANN-based MPC was able to reject the imposed disturbance as well as to track the proposed trajectory, while considering operational constraints of the plant.
doi_str_mv 10.22409/engevista.v16i1.468
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_22409_engevista_v16i1_468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_22409_engevista_v16i1_468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1428-d7e9dfd51b5b85c96388cf7c9d3b366b1c2a571a67222272eda08c8bd1f6db173</originalsourceid><addsrcrecordid>eNo9kN9OgzAchRujicvcG3jRB5DJry1tuSSMbURGDSsavWloC4bEf4FliW8vTuO5-W7OORcfQtcQLglhYXzbvr-0x348NMsj8B6WjMszNCMURMAFiHM0AwZRICiwS7QYx96GjAkayZjMkNmpVVbk5eYGq3ud7_LnROeqxEm5wqkqdaUKrNY4wes0xXWZa1zvpzYus7pKign6UVV3-1M_e1BF_bNOqie8y_RWrfZX6KJrXsd28cc5qteZTrdBoTZ5mhSBA0Zk4EUb-85HYCMrIxdzKqXrhIs9tZRzC440kYCGCzJFkNY3oXTSeui4tyDoHLHfXzd8jOPQduZz6N-a4ctAaE6ezL8nc_JkJk_0G5EQV48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MODELING, OPTIMIZATION AND CONTROL OF A FCC UNIT USING NEURAL NETWORKS AND EVOLUTIONARY METHODS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bispo, Vitor Diego da Silva ; Silva, Elina Sandra Ramos de Lira e ; Meleiro, Luiz Augusto Da Cruz</creator><creatorcontrib>Bispo, Vitor Diego da Silva ; Silva, Elina Sandra Ramos de Lira e ; Meleiro, Luiz Augusto Da Cruz</creatorcontrib><description>This paper presents a simulation study of the use of an artificial neural network (ANN) model for control and optimization of a Fluidized-Bed Catalytic Cracking reactor-regenerator system (FCC). This case study, whose phenomenological model was validated with industrial data, is a multivariable and nonlinear process with strong interactions among the operational variables. In order to obtain a dynamic model of the FCC system, a feedforward ANN model was identified. Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) evolutionary methods were used to set optimal operating conditions for the FCC, and both algorithms presented good and consistent results for typical FCC optimization problems. The neural model was also used in the design of a Model-Based Predictive Control (MPC) for the FCC process. It was showed that the ANN-based MPC was able to reject the imposed disturbance as well as to track the proposed trajectory, while considering operational constraints of the plant.</description><identifier>ISSN: 1415-7314</identifier><identifier>EISSN: 2317-6717</identifier><identifier>DOI: 10.22409/engevista.v16i1.468</identifier><language>eng</language><ispartof>Engevista, 2013-07, Vol.16 (1), p.70</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1428-d7e9dfd51b5b85c96388cf7c9d3b366b1c2a571a67222272eda08c8bd1f6db173</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bispo, Vitor Diego da Silva</creatorcontrib><creatorcontrib>Silva, Elina Sandra Ramos de Lira e</creatorcontrib><creatorcontrib>Meleiro, Luiz Augusto Da Cruz</creatorcontrib><title>MODELING, OPTIMIZATION AND CONTROL OF A FCC UNIT USING NEURAL NETWORKS AND EVOLUTIONARY METHODS</title><title>Engevista</title><description>This paper presents a simulation study of the use of an artificial neural network (ANN) model for control and optimization of a Fluidized-Bed Catalytic Cracking reactor-regenerator system (FCC). This case study, whose phenomenological model was validated with industrial data, is a multivariable and nonlinear process with strong interactions among the operational variables. In order to obtain a dynamic model of the FCC system, a feedforward ANN model was identified. Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) evolutionary methods were used to set optimal operating conditions for the FCC, and both algorithms presented good and consistent results for typical FCC optimization problems. The neural model was also used in the design of a Model-Based Predictive Control (MPC) for the FCC process. It was showed that the ANN-based MPC was able to reject the imposed disturbance as well as to track the proposed trajectory, while considering operational constraints of the plant.</description><issn>1415-7314</issn><issn>2317-6717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kN9OgzAchRujicvcG3jRB5DJry1tuSSMbURGDSsavWloC4bEf4FliW8vTuO5-W7OORcfQtcQLglhYXzbvr-0x348NMsj8B6WjMszNCMURMAFiHM0AwZRICiwS7QYx96GjAkayZjMkNmpVVbk5eYGq3ud7_LnROeqxEm5wqkqdaUKrNY4wes0xXWZa1zvpzYus7pKign6UVV3-1M_e1BF_bNOqie8y_RWrfZX6KJrXsd28cc5qteZTrdBoTZ5mhSBA0Zk4EUb-85HYCMrIxdzKqXrhIs9tZRzC440kYCGCzJFkNY3oXTSeui4tyDoHLHfXzd8jOPQduZz6N-a4ctAaE6ezL8nc_JkJk_0G5EQV48</recordid><startdate>20130721</startdate><enddate>20130721</enddate><creator>Bispo, Vitor Diego da Silva</creator><creator>Silva, Elina Sandra Ramos de Lira e</creator><creator>Meleiro, Luiz Augusto Da Cruz</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130721</creationdate><title>MODELING, OPTIMIZATION AND CONTROL OF A FCC UNIT USING NEURAL NETWORKS AND EVOLUTIONARY METHODS</title><author>Bispo, Vitor Diego da Silva ; Silva, Elina Sandra Ramos de Lira e ; Meleiro, Luiz Augusto Da Cruz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1428-d7e9dfd51b5b85c96388cf7c9d3b366b1c2a571a67222272eda08c8bd1f6db173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bispo, Vitor Diego da Silva</creatorcontrib><creatorcontrib>Silva, Elina Sandra Ramos de Lira e</creatorcontrib><creatorcontrib>Meleiro, Luiz Augusto Da Cruz</creatorcontrib><collection>CrossRef</collection><jtitle>Engevista</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bispo, Vitor Diego da Silva</au><au>Silva, Elina Sandra Ramos de Lira e</au><au>Meleiro, Luiz Augusto Da Cruz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELING, OPTIMIZATION AND CONTROL OF A FCC UNIT USING NEURAL NETWORKS AND EVOLUTIONARY METHODS</atitle><jtitle>Engevista</jtitle><date>2013-07-21</date><risdate>2013</risdate><volume>16</volume><issue>1</issue><spage>70</spage><pages>70-</pages><issn>1415-7314</issn><eissn>2317-6717</eissn><abstract>This paper presents a simulation study of the use of an artificial neural network (ANN) model for control and optimization of a Fluidized-Bed Catalytic Cracking reactor-regenerator system (FCC). This case study, whose phenomenological model was validated with industrial data, is a multivariable and nonlinear process with strong interactions among the operational variables. In order to obtain a dynamic model of the FCC system, a feedforward ANN model was identified. Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) evolutionary methods were used to set optimal operating conditions for the FCC, and both algorithms presented good and consistent results for typical FCC optimization problems. The neural model was also used in the design of a Model-Based Predictive Control (MPC) for the FCC process. It was showed that the ANN-based MPC was able to reject the imposed disturbance as well as to track the proposed trajectory, while considering operational constraints of the plant.</abstract><doi>10.22409/engevista.v16i1.468</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1415-7314
ispartof Engevista, 2013-07, Vol.16 (1), p.70
issn 1415-7314
2317-6717
language eng
recordid cdi_crossref_primary_10_22409_engevista_v16i1_468
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title MODELING, OPTIMIZATION AND CONTROL OF A FCC UNIT USING NEURAL NETWORKS AND EVOLUTIONARY METHODS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELING,%20OPTIMIZATION%20AND%20CONTROL%20OF%20A%20FCC%20UNIT%20USING%20NEURAL%20NETWORKS%20AND%20EVOLUTIONARY%20METHODS&rft.jtitle=Engevista&rft.au=Bispo,%20Vitor%20Diego%20da%20Silva&rft.date=2013-07-21&rft.volume=16&rft.issue=1&rft.spage=70&rft.pages=70-&rft.issn=1415-7314&rft.eissn=2317-6717&rft_id=info:doi/10.22409/engevista.v16i1.468&rft_dat=%3Ccrossref%3E10_22409_engevista_v16i1_468%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true