Parameter Estimation Based on Double Ranked Set Samples with Applications to Weibull Distribution

In this paper, the likelihood function for parameter estimation based on double ranked set sampling (DRSS) schemes is introduced. The proposed likelihood function is used for the estimation of the Weibull distribution parameters. The maximum likelihood estimators (MLEs) are investigated and compared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of modern applied statistical methods 2022-01, Vol.19 (1), p.2-24
Hauptverfasser: Sabry, Mohamed Abd Elhamed, Muhammed, Hiba Zeyada, Shaaban, Mostafa, Nabih, Abd El Hady
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the likelihood function for parameter estimation based on double ranked set sampling (DRSS) schemes is introduced. The proposed likelihood function is used for the estimation of the Weibull distribution parameters. The maximum likelihood estimators (MLEs) are investigated and compared to the corresponding ones based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. A Monte Carlo simulation is conducted and the absolute relative biases, mean square errors, and efficiencies are compared for the different schemes. It is found that, the MLEs based on DRSS is more efficient than MLE using SRS and RSS for estimating the two parameters of the Weibull distribution (WD).
ISSN:1538-9472
1538-9472
DOI:10.22237/jmasm/1619482260