A DISCRETE ELEMENT FORMALISM FOR MODELLING WEAR PARTICLE FORMATION IN CONTACT BETWEEN SLIDING METALS

The paper describes an advanced discrete-element based mechanical model, which allows modelling contact interaction of ductile materials with taking into account fracture and surface adhesion by the cold welding mechanism. The model describes these competitive processes from a unified standpoint and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Facta Universitatis. Series: Mechanical Engineering 2021-04, Vol.19 (1), p.7
Hauptverfasser: Shilko, Evgeny V., Grigoriev, Aleksandr S., Smolin, Alexey Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 7
container_title Facta Universitatis. Series: Mechanical Engineering
container_volume 19
creator Shilko, Evgeny V.
Grigoriev, Aleksandr S.
Smolin, Alexey Yu
description The paper describes an advanced discrete-element based mechanical model, which allows modelling contact interaction of ductile materials with taking into account fracture and surface adhesion by the cold welding mechanism. The model describes these competitive processes from a unified standpoint and uses plastic work of deformation as a criterion of both local fracture and chemical bonding of surfaces in contact spots. Using this model, we carried out a preliminary study of the formation of wear particles and wedges during the friction of rough metal surfaces and the influence of the type of forming third body (interfacial) elements on the dynamics of the friction coefficient. The qualitative difference of friction dynamics in the areas of the contact zone characterized by different degrees of mechanical confinement is shown.
doi_str_mv 10.22190/FUME201221012S
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_22190_FUME201221012S</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_22190_FUME201221012S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-91441de8b112b552e5c774e6a431d8ede6a62ea94ea9471acf88a563ed5f7ea43</originalsourceid><addsrcrecordid>eNpVkEtPhEAQhCdGE8m6Z6_zB3Cn58HjOEKzTjKAgdnskbAwJBqNBrz472VdLx66-6ukug5FyD2wB84hZbviUCJnsIp1tVck4EKokEEkr0nAhJIhZ1zdku2yvDLGQHAlUhmQUdPctFmDDilaLLFytKibUlvTlmeiZZ2jtaba0yPqhj7rxpnM4sXlTF1RU9GsrpzOHH1Ed0SsaGtNfn4p0Wnb3pGbqX9b_PbvbsihQJc9hbbem0zbcOASvsIUpITRJycAflKKezXEsfRRLwWMiR9XirjvU3meGPphSpJeRcKPaor96tqQ3SV3mD-WZfZT9zm_vPfzdwes--2p-9-T-AE7h1Iv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A DISCRETE ELEMENT FORMALISM FOR MODELLING WEAR PARTICLE FORMATION IN CONTACT BETWEEN SLIDING METALS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shilko, Evgeny V. ; Grigoriev, Aleksandr S. ; Smolin, Alexey Yu</creator><creatorcontrib>Shilko, Evgeny V. ; Grigoriev, Aleksandr S. ; Smolin, Alexey Yu</creatorcontrib><description>The paper describes an advanced discrete-element based mechanical model, which allows modelling contact interaction of ductile materials with taking into account fracture and surface adhesion by the cold welding mechanism. The model describes these competitive processes from a unified standpoint and uses plastic work of deformation as a criterion of both local fracture and chemical bonding of surfaces in contact spots. Using this model, we carried out a preliminary study of the formation of wear particles and wedges during the friction of rough metal surfaces and the influence of the type of forming third body (interfacial) elements on the dynamics of the friction coefficient. The qualitative difference of friction dynamics in the areas of the contact zone characterized by different degrees of mechanical confinement is shown.</description><identifier>ISSN: 0354-2025</identifier><identifier>EISSN: 2335-0164</identifier><identifier>DOI: 10.22190/FUME201221012S</identifier><language>eng</language><ispartof>Facta Universitatis. Series: Mechanical Engineering, 2021-04, Vol.19 (1), p.7</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-91441de8b112b552e5c774e6a431d8ede6a62ea94ea9471acf88a563ed5f7ea43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shilko, Evgeny V.</creatorcontrib><creatorcontrib>Grigoriev, Aleksandr S.</creatorcontrib><creatorcontrib>Smolin, Alexey Yu</creatorcontrib><title>A DISCRETE ELEMENT FORMALISM FOR MODELLING WEAR PARTICLE FORMATION IN CONTACT BETWEEN SLIDING METALS</title><title>Facta Universitatis. Series: Mechanical Engineering</title><description>The paper describes an advanced discrete-element based mechanical model, which allows modelling contact interaction of ductile materials with taking into account fracture and surface adhesion by the cold welding mechanism. The model describes these competitive processes from a unified standpoint and uses plastic work of deformation as a criterion of both local fracture and chemical bonding of surfaces in contact spots. Using this model, we carried out a preliminary study of the formation of wear particles and wedges during the friction of rough metal surfaces and the influence of the type of forming third body (interfacial) elements on the dynamics of the friction coefficient. The qualitative difference of friction dynamics in the areas of the contact zone characterized by different degrees of mechanical confinement is shown.</description><issn>0354-2025</issn><issn>2335-0164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkEtPhEAQhCdGE8m6Z6_zB3Cn58HjOEKzTjKAgdnskbAwJBqNBrz472VdLx66-6ukug5FyD2wB84hZbviUCJnsIp1tVck4EKokEEkr0nAhJIhZ1zdku2yvDLGQHAlUhmQUdPctFmDDilaLLFytKibUlvTlmeiZZ2jtaba0yPqhj7rxpnM4sXlTF1RU9GsrpzOHH1Ed0SsaGtNfn4p0Wnb3pGbqX9b_PbvbsihQJc9hbbem0zbcOASvsIUpITRJycAflKKezXEsfRRLwWMiR9XirjvU3meGPphSpJeRcKPaor96tqQ3SV3mD-WZfZT9zm_vPfzdwes--2p-9-T-AE7h1Iv</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Shilko, Evgeny V.</creator><creator>Grigoriev, Aleksandr S.</creator><creator>Smolin, Alexey Yu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>A DISCRETE ELEMENT FORMALISM FOR MODELLING WEAR PARTICLE FORMATION IN CONTACT BETWEEN SLIDING METALS</title><author>Shilko, Evgeny V. ; Grigoriev, Aleksandr S. ; Smolin, Alexey Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-91441de8b112b552e5c774e6a431d8ede6a62ea94ea9471acf88a563ed5f7ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Shilko, Evgeny V.</creatorcontrib><creatorcontrib>Grigoriev, Aleksandr S.</creatorcontrib><creatorcontrib>Smolin, Alexey Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Facta Universitatis. Series: Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilko, Evgeny V.</au><au>Grigoriev, Aleksandr S.</au><au>Smolin, Alexey Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DISCRETE ELEMENT FORMALISM FOR MODELLING WEAR PARTICLE FORMATION IN CONTACT BETWEEN SLIDING METALS</atitle><jtitle>Facta Universitatis. Series: Mechanical Engineering</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>7</spage><pages>7-</pages><issn>0354-2025</issn><eissn>2335-0164</eissn><abstract>The paper describes an advanced discrete-element based mechanical model, which allows modelling contact interaction of ductile materials with taking into account fracture and surface adhesion by the cold welding mechanism. The model describes these competitive processes from a unified standpoint and uses plastic work of deformation as a criterion of both local fracture and chemical bonding of surfaces in contact spots. Using this model, we carried out a preliminary study of the formation of wear particles and wedges during the friction of rough metal surfaces and the influence of the type of forming third body (interfacial) elements on the dynamics of the friction coefficient. The qualitative difference of friction dynamics in the areas of the contact zone characterized by different degrees of mechanical confinement is shown.</abstract><doi>10.22190/FUME201221012S</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-2025
ispartof Facta Universitatis. Series: Mechanical Engineering, 2021-04, Vol.19 (1), p.7
issn 0354-2025
2335-0164
language eng
recordid cdi_crossref_primary_10_22190_FUME201221012S
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A DISCRETE ELEMENT FORMALISM FOR MODELLING WEAR PARTICLE FORMATION IN CONTACT BETWEEN SLIDING METALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DISCRETE%20ELEMENT%20FORMALISM%20FOR%20MODELLING%20WEAR%20PARTICLE%20FORMATION%20IN%20CONTACT%20BETWEEN%20SLIDING%20METALS&rft.jtitle=Facta%20Universitatis.%20Series:%20Mechanical%20Engineering&rft.au=Shilko,%20Evgeny%20V.&rft.date=2021-04-01&rft.volume=19&rft.issue=1&rft.spage=7&rft.pages=7-&rft.issn=0354-2025&rft.eissn=2335-0164&rft_id=info:doi/10.22190/FUME201221012S&rft_dat=%3Ccrossref%3E10_22190_FUME201221012S%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true