EVALUATION OF PREDICTIVE UNCERTAINTY IN DISTRIBUTED RAINFALL-RUNOFF MODELS

This paper aims to raise the growing importance of predictive uncertainty evaluation in distributed modeling. The ideas are illustrated by applying a particular rainfall-runoff model in four catchments with different characteristics. Sensitivity analysis and parameter identifiability, as complimenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PROCEEDINGS OF HYDRAULIC ENGINEERING 2008, Vol.52, pp.73-78
Hauptverfasser: SORIA, Freddy, KAZAMA, So, SAWAMOTO, Masaki, TAKARA, Kaoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 73
container_title PROCEEDINGS OF HYDRAULIC ENGINEERING
container_volume 52
creator SORIA, Freddy
KAZAMA, So
SAWAMOTO, Masaki
TAKARA, Kaoru
description This paper aims to raise the growing importance of predictive uncertainty evaluation in distributed modeling. The ideas are illustrated by applying a particular rainfall-runoff model in four catchments with different characteristics. Sensitivity analysis and parameter identifiability, as complimentary uncertainty measures allowed us to individually evaluate the suitability of model components. The Sobol implementation is affected by the sample size and the correlation degree among parameters, observed after the total sum of individual variance contributions exceeded a theoretical total variance of 1.0, in magnitudes that varied from 5% in dry season to 60% in wet season, turning more difficult straightforward interpretations. Topographic index was used to judge the distributed performance of the model, adequately describing patterns of total discharge in homogeneous catchments with slopes ranging from 10% to 30%, and failing in less homogeneous catchments with low slope landscape.
doi_str_mv 10.2208/prohe.52.73
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2208_prohe_52_73</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_prohe1990_52_0_52_0_73_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2993-d5747f32baa08283e96ab8b6283d70c142800783950677ac74b6a4189aec2e693</originalsourceid><addsrcrecordid>eNo90E1PwkAQBuCN0USCnPwDezfF_Wh3do-1H7qmtqZsSTw127IIBoVsufjvBSFcZiYzT-bwInRPyZQxIh93frty04hNgV-hEZUyDBQFdo1GRFERAIfwFk2GYd0RwqIQBKgRes3mcdHERlclrnL8XmepToyeZ7gpk6w2sS7NB9YlTvXM1PqpMVmK68M2j4siqJuyynP8VqVZMbtDN0u7Gdzk3MeoyTOTvARF9ayTuAh6phQPFhGEsOSss5ZIJrlTwnayE4dxAaSnIZOEgOQqIgLA9hB2woZUKut65oTiY_Rw-tv77TB4t2x3fv1t_W9LSXtMov1Poo1YC_yg05P-Gvb2012s9ft1v3EnS5UiR38uwC_nfmV96374H0bTYvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EVALUATION OF PREDICTIVE UNCERTAINTY IN DISTRIBUTED RAINFALL-RUNOFF MODELS</title><source>J-STAGE Free</source><source>Alma/SFX Local Collection</source><creator>SORIA, Freddy ; KAZAMA, So ; SAWAMOTO, Masaki ; TAKARA, Kaoru</creator><creatorcontrib>SORIA, Freddy ; KAZAMA, So ; SAWAMOTO, Masaki ; TAKARA, Kaoru</creatorcontrib><description>This paper aims to raise the growing importance of predictive uncertainty evaluation in distributed modeling. The ideas are illustrated by applying a particular rainfall-runoff model in four catchments with different characteristics. Sensitivity analysis and parameter identifiability, as complimentary uncertainty measures allowed us to individually evaluate the suitability of model components. The Sobol implementation is affected by the sample size and the correlation degree among parameters, observed after the total sum of individual variance contributions exceeded a theoretical total variance of 1.0, in magnitudes that varied from 5% in dry season to 60% in wet season, turning more difficult straightforward interpretations. Topographic index was used to judge the distributed performance of the model, adequately describing patterns of total discharge in homogeneous catchments with slopes ranging from 10% to 30%, and failing in less homogeneous catchments with low slope landscape.</description><identifier>ISSN: 0916-7374</identifier><identifier>EISSN: 1884-9172</identifier><identifier>DOI: 10.2208/prohe.52.73</identifier><language>eng</language><publisher>Japan Society of Civil Engineers</publisher><subject>dentifiability ; Sensitivity indices ; Sobol method ; topographic index</subject><ispartof>PROCEEDINGS OF HYDRAULIC ENGINEERING, 2008, Vol.52, pp.73-78</ispartof><rights>by Japan Society of Civil Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2993-d5747f32baa08283e96ab8b6283d70c142800783950677ac74b6a4189aec2e693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>SORIA, Freddy</creatorcontrib><creatorcontrib>KAZAMA, So</creatorcontrib><creatorcontrib>SAWAMOTO, Masaki</creatorcontrib><creatorcontrib>TAKARA, Kaoru</creatorcontrib><title>EVALUATION OF PREDICTIVE UNCERTAINTY IN DISTRIBUTED RAINFALL-RUNOFF MODELS</title><title>PROCEEDINGS OF HYDRAULIC ENGINEERING</title><addtitle>PROCEEDINGS OF HYDRAULIC ENGINEERING</addtitle><description>This paper aims to raise the growing importance of predictive uncertainty evaluation in distributed modeling. The ideas are illustrated by applying a particular rainfall-runoff model in four catchments with different characteristics. Sensitivity analysis and parameter identifiability, as complimentary uncertainty measures allowed us to individually evaluate the suitability of model components. The Sobol implementation is affected by the sample size and the correlation degree among parameters, observed after the total sum of individual variance contributions exceeded a theoretical total variance of 1.0, in magnitudes that varied from 5% in dry season to 60% in wet season, turning more difficult straightforward interpretations. Topographic index was used to judge the distributed performance of the model, adequately describing patterns of total discharge in homogeneous catchments with slopes ranging from 10% to 30%, and failing in less homogeneous catchments with low slope landscape.</description><subject>dentifiability</subject><subject>Sensitivity indices</subject><subject>Sobol method</subject><subject>topographic index</subject><issn>0916-7374</issn><issn>1884-9172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo90E1PwkAQBuCN0USCnPwDezfF_Wh3do-1H7qmtqZsSTw127IIBoVsufjvBSFcZiYzT-bwInRPyZQxIh93frty04hNgV-hEZUyDBQFdo1GRFERAIfwFk2GYd0RwqIQBKgRes3mcdHERlclrnL8XmepToyeZ7gpk6w2sS7NB9YlTvXM1PqpMVmK68M2j4siqJuyynP8VqVZMbtDN0u7Gdzk3MeoyTOTvARF9ayTuAh6phQPFhGEsOSss5ZIJrlTwnayE4dxAaSnIZOEgOQqIgLA9hB2woZUKut65oTiY_Rw-tv77TB4t2x3fv1t_W9LSXtMov1Poo1YC_yg05P-Gvb2012s9ft1v3EnS5UiR38uwC_nfmV96374H0bTYvU</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>SORIA, Freddy</creator><creator>KAZAMA, So</creator><creator>SAWAMOTO, Masaki</creator><creator>TAKARA, Kaoru</creator><general>Japan Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2008</creationdate><title>EVALUATION OF PREDICTIVE UNCERTAINTY IN DISTRIBUTED RAINFALL-RUNOFF MODELS</title><author>SORIA, Freddy ; KAZAMA, So ; SAWAMOTO, Masaki ; TAKARA, Kaoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2993-d5747f32baa08283e96ab8b6283d70c142800783950677ac74b6a4189aec2e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>dentifiability</topic><topic>Sensitivity indices</topic><topic>Sobol method</topic><topic>topographic index</topic><toplevel>online_resources</toplevel><creatorcontrib>SORIA, Freddy</creatorcontrib><creatorcontrib>KAZAMA, So</creatorcontrib><creatorcontrib>SAWAMOTO, Masaki</creatorcontrib><creatorcontrib>TAKARA, Kaoru</creatorcontrib><collection>CrossRef</collection><jtitle>PROCEEDINGS OF HYDRAULIC ENGINEERING</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SORIA, Freddy</au><au>KAZAMA, So</au><au>SAWAMOTO, Masaki</au><au>TAKARA, Kaoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EVALUATION OF PREDICTIVE UNCERTAINTY IN DISTRIBUTED RAINFALL-RUNOFF MODELS</atitle><jtitle>PROCEEDINGS OF HYDRAULIC ENGINEERING</jtitle><addtitle>PROCEEDINGS OF HYDRAULIC ENGINEERING</addtitle><date>2008</date><risdate>2008</risdate><volume>52</volume><spage>73</spage><epage>78</epage><pages>73-78</pages><issn>0916-7374</issn><eissn>1884-9172</eissn><abstract>This paper aims to raise the growing importance of predictive uncertainty evaluation in distributed modeling. The ideas are illustrated by applying a particular rainfall-runoff model in four catchments with different characteristics. Sensitivity analysis and parameter identifiability, as complimentary uncertainty measures allowed us to individually evaluate the suitability of model components. The Sobol implementation is affected by the sample size and the correlation degree among parameters, observed after the total sum of individual variance contributions exceeded a theoretical total variance of 1.0, in magnitudes that varied from 5% in dry season to 60% in wet season, turning more difficult straightforward interpretations. Topographic index was used to judge the distributed performance of the model, adequately describing patterns of total discharge in homogeneous catchments with slopes ranging from 10% to 30%, and failing in less homogeneous catchments with low slope landscape.</abstract><pub>Japan Society of Civil Engineers</pub><doi>10.2208/prohe.52.73</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-7374
ispartof PROCEEDINGS OF HYDRAULIC ENGINEERING, 2008, Vol.52, pp.73-78
issn 0916-7374
1884-9172
language eng
recordid cdi_crossref_primary_10_2208_prohe_52_73
source J-STAGE Free; Alma/SFX Local Collection
subjects dentifiability
Sensitivity indices
Sobol method
topographic index
title EVALUATION OF PREDICTIVE UNCERTAINTY IN DISTRIBUTED RAINFALL-RUNOFF MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EVALUATION%20OF%20PREDICTIVE%20UNCERTAINTY%20IN%20DISTRIBUTED%20RAINFALL-RUNOFF%20MODELS&rft.jtitle=PROCEEDINGS%20OF%20HYDRAULIC%20ENGINEERING&rft.au=SORIA,%20Freddy&rft.date=2008&rft.volume=52&rft.spage=73&rft.epage=78&rft.pages=73-78&rft.issn=0916-7374&rft.eissn=1884-9172&rft_id=info:doi/10.2208/prohe.52.73&rft_dat=%3Cjstage_cross%3Earticle_prohe1990_52_0_52_0_73_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true