Detecting Fake QR Codes Using Information from Error-Correction

In 2018, Takita et al. proposed a construction method of a fake QR code by adding stains to a target QR code, that probabilistically leads users to a malicious website. The construction abused the error-correction of error-correcting code used in the QR code, namely, the added stains induce decoding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Information Processing 2021, Vol.29, pp.548-558
Hauptverfasser: Ohigashi, Toshihiro, Kawaguchi, Shuya, Kobayashi, Kai, Kimura, Hayato, Suzuki, Tatsuya, Okabe, Daichi, Ishibashi, Takuya, Yamamoto, Hiroshi, Inui, Maki, Miyamoto, Ryo, Furukawa, Kazuyoshi, Izu, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue
container_start_page 548
container_title Journal of Information Processing
container_volume 29
creator Ohigashi, Toshihiro
Kawaguchi, Shuya
Kobayashi, Kai
Kimura, Hayato
Suzuki, Tatsuya
Okabe, Daichi
Ishibashi, Takuya
Yamamoto, Hiroshi
Inui, Maki
Miyamoto, Ryo
Furukawa, Kazuyoshi
Izu, Tetsuya
description In 2018, Takita et al. proposed a construction method of a fake QR code by adding stains to a target QR code, that probabilistically leads users to a malicious website. The construction abused the error-correction of error-correcting code used in the QR code, namely, the added stains induce decoding errors in black and white detection by a camera, so that the decoded URL leads to the malicious website. Also, the same authors proposed a detection method against such fake QR codes by comparing decoded URLs among multiple QR code readings since the decoded URLs may differ because of its probabilistic property. However, the detection method cannot work well over a few readings. Moreover, the proposed detection method does not consider the environmental or accidental changes such as sudden sunshine or reflection, nor recognizes the fake QR code as non-fake when the probability is low. This paper proposes new detection methods for such fake QR codes by analyzing information obtained from the error-correcting process. This paper also reports results from implementing the new detection methods on an Android smartphone. Results show that a combination of these detection methods works very well compared to when using only a single detection method.
doi_str_mv 10.2197/ipsjjip.29.548
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2197_ipsjjip_29_548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_ipsjjip_29_0_29_548_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3308-bd5a686d2185569e28d10b0766c5d936d0ac1484246bcce001a6e08c366624413</originalsourceid><addsrcrecordid>eNpNj8FKw0AQhhdRsFavnvMCibOb7HRzkhLbWiiIYs_LZrOpiU22zObi29vQUnqaYf7_G_gYe-aQCJ7PXppDaNvmkIg8kZm6YROulIgRpbi92u_ZQwgtAOYgYcJe39zg7ND0u2hpfl30-RUVvnIh2obxtu5rT50ZGt9HNfkuWhB5igtPNFK-f2R3tdkH93SeU7ZdLr6L93jzsVoX801s0xRUXFbSoMJKcCUl5k6oikMJM0QrqzzFCozlmcpEhqW1DoAbdKBsiogiy3g6ZcnpryUfArlaH6jpDP1pDnrU12d9LXJ91D8C8xPQhsHs3KVuaGjs3l3X4cxcMvtjSLs-_QcXsmZd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Fake QR Codes Using Information from Error-Correction</title><source>J-STAGE Free</source><creator>Ohigashi, Toshihiro ; Kawaguchi, Shuya ; Kobayashi, Kai ; Kimura, Hayato ; Suzuki, Tatsuya ; Okabe, Daichi ; Ishibashi, Takuya ; Yamamoto, Hiroshi ; Inui, Maki ; Miyamoto, Ryo ; Furukawa, Kazuyoshi ; Izu, Tetsuya</creator><creatorcontrib>Ohigashi, Toshihiro ; Kawaguchi, Shuya ; Kobayashi, Kai ; Kimura, Hayato ; Suzuki, Tatsuya ; Okabe, Daichi ; Ishibashi, Takuya ; Yamamoto, Hiroshi ; Inui, Maki ; Miyamoto, Ryo ; Furukawa, Kazuyoshi ; Izu, Tetsuya</creatorcontrib><description>In 2018, Takita et al. proposed a construction method of a fake QR code by adding stains to a target QR code, that probabilistically leads users to a malicious website. The construction abused the error-correction of error-correcting code used in the QR code, namely, the added stains induce decoding errors in black and white detection by a camera, so that the decoded URL leads to the malicious website. Also, the same authors proposed a detection method against such fake QR codes by comparing decoded URLs among multiple QR code readings since the decoded URLs may differ because of its probabilistic property. However, the detection method cannot work well over a few readings. Moreover, the proposed detection method does not consider the environmental or accidental changes such as sudden sunshine or reflection, nor recognizes the fake QR code as non-fake when the probability is low. This paper proposes new detection methods for such fake QR codes by analyzing information obtained from the error-correcting process. This paper also reports results from implementing the new detection methods on an Android smartphone. Results show that a combination of these detection methods works very well compared to when using only a single detection method.</description><identifier>ISSN: 1882-6652</identifier><identifier>EISSN: 1882-6652</identifier><identifier>DOI: 10.2197/ipsjjip.29.548</identifier><language>eng</language><publisher>Information Processing Society of Japan</publisher><subject>detection ; error-correcting code ; fake ; phishing ; QR code</subject><ispartof>Journal of Information Processing, 2021, Vol.29, pp.548-558</ispartof><rights>2021 by the Information Processing Society of Japan</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3308-bd5a686d2185569e28d10b0766c5d936d0ac1484246bcce001a6e08c366624413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ohigashi, Toshihiro</creatorcontrib><creatorcontrib>Kawaguchi, Shuya</creatorcontrib><creatorcontrib>Kobayashi, Kai</creatorcontrib><creatorcontrib>Kimura, Hayato</creatorcontrib><creatorcontrib>Suzuki, Tatsuya</creatorcontrib><creatorcontrib>Okabe, Daichi</creatorcontrib><creatorcontrib>Ishibashi, Takuya</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Inui, Maki</creatorcontrib><creatorcontrib>Miyamoto, Ryo</creatorcontrib><creatorcontrib>Furukawa, Kazuyoshi</creatorcontrib><creatorcontrib>Izu, Tetsuya</creatorcontrib><title>Detecting Fake QR Codes Using Information from Error-Correction</title><title>Journal of Information Processing</title><addtitle>Journal of Information Processing</addtitle><description>In 2018, Takita et al. proposed a construction method of a fake QR code by adding stains to a target QR code, that probabilistically leads users to a malicious website. The construction abused the error-correction of error-correcting code used in the QR code, namely, the added stains induce decoding errors in black and white detection by a camera, so that the decoded URL leads to the malicious website. Also, the same authors proposed a detection method against such fake QR codes by comparing decoded URLs among multiple QR code readings since the decoded URLs may differ because of its probabilistic property. However, the detection method cannot work well over a few readings. Moreover, the proposed detection method does not consider the environmental or accidental changes such as sudden sunshine or reflection, nor recognizes the fake QR code as non-fake when the probability is low. This paper proposes new detection methods for such fake QR codes by analyzing information obtained from the error-correcting process. This paper also reports results from implementing the new detection methods on an Android smartphone. Results show that a combination of these detection methods works very well compared to when using only a single detection method.</description><subject>detection</subject><subject>error-correcting code</subject><subject>fake</subject><subject>phishing</subject><subject>QR code</subject><issn>1882-6652</issn><issn>1882-6652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj8FKw0AQhhdRsFavnvMCibOb7HRzkhLbWiiIYs_LZrOpiU22zObi29vQUnqaYf7_G_gYe-aQCJ7PXppDaNvmkIg8kZm6YROulIgRpbi92u_ZQwgtAOYgYcJe39zg7ND0u2hpfl30-RUVvnIh2obxtu5rT50ZGt9HNfkuWhB5igtPNFK-f2R3tdkH93SeU7ZdLr6L93jzsVoX801s0xRUXFbSoMJKcCUl5k6oikMJM0QrqzzFCozlmcpEhqW1DoAbdKBsiogiy3g6ZcnpryUfArlaH6jpDP1pDnrU12d9LXJ91D8C8xPQhsHs3KVuaGjs3l3X4cxcMvtjSLs-_QcXsmZd</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ohigashi, Toshihiro</creator><creator>Kawaguchi, Shuya</creator><creator>Kobayashi, Kai</creator><creator>Kimura, Hayato</creator><creator>Suzuki, Tatsuya</creator><creator>Okabe, Daichi</creator><creator>Ishibashi, Takuya</creator><creator>Yamamoto, Hiroshi</creator><creator>Inui, Maki</creator><creator>Miyamoto, Ryo</creator><creator>Furukawa, Kazuyoshi</creator><creator>Izu, Tetsuya</creator><general>Information Processing Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Detecting Fake QR Codes Using Information from Error-Correction</title><author>Ohigashi, Toshihiro ; Kawaguchi, Shuya ; Kobayashi, Kai ; Kimura, Hayato ; Suzuki, Tatsuya ; Okabe, Daichi ; Ishibashi, Takuya ; Yamamoto, Hiroshi ; Inui, Maki ; Miyamoto, Ryo ; Furukawa, Kazuyoshi ; Izu, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3308-bd5a686d2185569e28d10b0766c5d936d0ac1484246bcce001a6e08c366624413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>detection</topic><topic>error-correcting code</topic><topic>fake</topic><topic>phishing</topic><topic>QR code</topic><toplevel>online_resources</toplevel><creatorcontrib>Ohigashi, Toshihiro</creatorcontrib><creatorcontrib>Kawaguchi, Shuya</creatorcontrib><creatorcontrib>Kobayashi, Kai</creatorcontrib><creatorcontrib>Kimura, Hayato</creatorcontrib><creatorcontrib>Suzuki, Tatsuya</creatorcontrib><creatorcontrib>Okabe, Daichi</creatorcontrib><creatorcontrib>Ishibashi, Takuya</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Inui, Maki</creatorcontrib><creatorcontrib>Miyamoto, Ryo</creatorcontrib><creatorcontrib>Furukawa, Kazuyoshi</creatorcontrib><creatorcontrib>Izu, Tetsuya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Information Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohigashi, Toshihiro</au><au>Kawaguchi, Shuya</au><au>Kobayashi, Kai</au><au>Kimura, Hayato</au><au>Suzuki, Tatsuya</au><au>Okabe, Daichi</au><au>Ishibashi, Takuya</au><au>Yamamoto, Hiroshi</au><au>Inui, Maki</au><au>Miyamoto, Ryo</au><au>Furukawa, Kazuyoshi</au><au>Izu, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Fake QR Codes Using Information from Error-Correction</atitle><jtitle>Journal of Information Processing</jtitle><addtitle>Journal of Information Processing</addtitle><date>2021</date><risdate>2021</risdate><volume>29</volume><spage>548</spage><epage>558</epage><pages>548-558</pages><issn>1882-6652</issn><eissn>1882-6652</eissn><abstract>In 2018, Takita et al. proposed a construction method of a fake QR code by adding stains to a target QR code, that probabilistically leads users to a malicious website. The construction abused the error-correction of error-correcting code used in the QR code, namely, the added stains induce decoding errors in black and white detection by a camera, so that the decoded URL leads to the malicious website. Also, the same authors proposed a detection method against such fake QR codes by comparing decoded URLs among multiple QR code readings since the decoded URLs may differ because of its probabilistic property. However, the detection method cannot work well over a few readings. Moreover, the proposed detection method does not consider the environmental or accidental changes such as sudden sunshine or reflection, nor recognizes the fake QR code as non-fake when the probability is low. This paper proposes new detection methods for such fake QR codes by analyzing information obtained from the error-correcting process. This paper also reports results from implementing the new detection methods on an Android smartphone. Results show that a combination of these detection methods works very well compared to when using only a single detection method.</abstract><pub>Information Processing Society of Japan</pub><doi>10.2197/ipsjjip.29.548</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-6652
ispartof Journal of Information Processing, 2021, Vol.29, pp.548-558
issn 1882-6652
1882-6652
language eng
recordid cdi_crossref_primary_10_2197_ipsjjip_29_548
source J-STAGE Free
subjects detection
error-correcting code
fake
phishing
QR code
title Detecting Fake QR Codes Using Information from Error-Correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Fake%20QR%20Codes%20Using%20Information%20from%20Error-Correction&rft.jtitle=Journal%20of%20Information%20Processing&rft.au=Ohigashi,%20Toshihiro&rft.date=2021&rft.volume=29&rft.spage=548&rft.epage=558&rft.pages=548-558&rft.issn=1882-6652&rft.eissn=1882-6652&rft_id=info:doi/10.2197/ipsjjip.29.548&rft_dat=%3Cjstage_cross%3Earticle_ipsjjip_29_0_29_548_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true