SOLVING THE TASK OF LOCAL OPTIMA TRAPS IN DATA MINING APPLICATIONS THROUGH INTELLIGENT MULT-AGENT SWARM AND ORTHOPAIR FUZZY SETS

Local optima traps pose a significant challenge in optimizing complex problems, particularly in data mining applications, where traditional algorithms may get stuck in suboptimal solutions. This study addresses this issue by combining the power of intelligent multi-agent swarm algorithms and orthopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICTACT journal on soft computing 2024-01, Vol.14 (3), p.3263-3268
Hauptverfasser: Kumar, Reddi Kiran, P, Chengamma, A, Senthil Kumar, G, Sai Chaitanya Kumar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3268
container_issue 3
container_start_page 3263
container_title ICTACT journal on soft computing
container_volume 14
creator Kumar, Reddi Kiran
P, Chengamma
A, Senthil Kumar
G, Sai Chaitanya Kumar
description Local optima traps pose a significant challenge in optimizing complex problems, particularly in data mining applications, where traditional algorithms may get stuck in suboptimal solutions. This study addresses this issue by combining the power of intelligent multi-agent swarm algorithms and orthopair fuzzy sets to enhance optimization processes. We propose a novel approach that leverages the collective intelligence of a multi-agent swarm system, enabling effective exploration and exploitation of solution spaces. Additionally, orthopair fuzzy sets are introduced to model and represent uncertainties inherent in data mining tasks, providing a more robust optimization framework. Our work contributes to the advancement of optimization techniques in data mining by offering a synergistic solution to local optima traps. The integration of intelligent multi-agent swarms and orthopair fuzzy sets enhances the algorithm’s adaptability and resilience, leading to improved convergence and better solutions. Experimental results demonstrate the efficacy of our proposed approach in overcoming local optima traps, showcasing superior performance compared to traditional algorithms. The hybrid system exhibits increased convergence rates and consistently discovers more accurate and diverse solutions across various data mining scenarios.
doi_str_mv 10.21917/ijsc.2024.0458
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_21917_ijsc_2024_0458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_21917_ijsc_2024_0458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c818-5ef3105de57303b24a0db9bb057d3290aceede0ee2af5eca6428ec6d44890da83</originalsourceid><addsrcrecordid>eNotkE1PgzAcxhujicvc2Wu_ANu_hRZ6bDYGjYUS6DTuQngpyRaNBk7e_Ogb09PzHJ6X5IfQM4E1JYKEm9N56tYUaLCGgEV3aEEpFR4XjN-jBYiQe5xx8ohW03QGAMICyrhYoN_K6FeVJ9imMbayesFmj7XZSo1NYVUmsS1lUWGV4520Emcqn9OyKLTaSqtMXl2rpTkk6TVjY61VEucWZwdtPXmz1ZssMyzzHTalTU0hVYn3h-PxHVexrZ7Qw9B8TG71r0tk97Hdpp42yfVBe11EIo-5wSfAesdCH_yWBg30rWhbYGHvUwFN51zvwDnaDMx1DQ9o5DreB0EkoG8if4k2f7Pd-DVNoxvq7_H02Yw_NYH6hrCeEdYzwnpG6F8AaORblA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SOLVING THE TASK OF LOCAL OPTIMA TRAPS IN DATA MINING APPLICATIONS THROUGH INTELLIGENT MULT-AGENT SWARM AND ORTHOPAIR FUZZY SETS</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kumar, Reddi Kiran ; P, Chengamma ; A, Senthil Kumar ; G, Sai Chaitanya Kumar</creator><creatorcontrib>Kumar, Reddi Kiran ; P, Chengamma ; A, Senthil Kumar ; G, Sai Chaitanya Kumar ; DVR &amp; Dr. HS MIC College of Technology, India ; Krishna University, India ; Shri Vishnu Engineering College for Women, India ; Annamacharya Institute of Technology and Sciences, India</creatorcontrib><description>Local optima traps pose a significant challenge in optimizing complex problems, particularly in data mining applications, where traditional algorithms may get stuck in suboptimal solutions. This study addresses this issue by combining the power of intelligent multi-agent swarm algorithms and orthopair fuzzy sets to enhance optimization processes. We propose a novel approach that leverages the collective intelligence of a multi-agent swarm system, enabling effective exploration and exploitation of solution spaces. Additionally, orthopair fuzzy sets are introduced to model and represent uncertainties inherent in data mining tasks, providing a more robust optimization framework. Our work contributes to the advancement of optimization techniques in data mining by offering a synergistic solution to local optima traps. The integration of intelligent multi-agent swarms and orthopair fuzzy sets enhances the algorithm’s adaptability and resilience, leading to improved convergence and better solutions. Experimental results demonstrate the efficacy of our proposed approach in overcoming local optima traps, showcasing superior performance compared to traditional algorithms. The hybrid system exhibits increased convergence rates and consistently discovers more accurate and diverse solutions across various data mining scenarios.</description><identifier>ISSN: 0976-6561</identifier><identifier>EISSN: 2229-6956</identifier><identifier>DOI: 10.21917/ijsc.2024.0458</identifier><language>eng</language><ispartof>ICTACT journal on soft computing, 2024-01, Vol.14 (3), p.3263-3268</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Kumar, Reddi Kiran</creatorcontrib><creatorcontrib>P, Chengamma</creatorcontrib><creatorcontrib>A, Senthil Kumar</creatorcontrib><creatorcontrib>G, Sai Chaitanya Kumar</creatorcontrib><creatorcontrib>DVR &amp; Dr. HS MIC College of Technology, India</creatorcontrib><creatorcontrib>Krishna University, India</creatorcontrib><creatorcontrib>Shri Vishnu Engineering College for Women, India</creatorcontrib><creatorcontrib>Annamacharya Institute of Technology and Sciences, India</creatorcontrib><title>SOLVING THE TASK OF LOCAL OPTIMA TRAPS IN DATA MINING APPLICATIONS THROUGH INTELLIGENT MULT-AGENT SWARM AND ORTHOPAIR FUZZY SETS</title><title>ICTACT journal on soft computing</title><description>Local optima traps pose a significant challenge in optimizing complex problems, particularly in data mining applications, where traditional algorithms may get stuck in suboptimal solutions. This study addresses this issue by combining the power of intelligent multi-agent swarm algorithms and orthopair fuzzy sets to enhance optimization processes. We propose a novel approach that leverages the collective intelligence of a multi-agent swarm system, enabling effective exploration and exploitation of solution spaces. Additionally, orthopair fuzzy sets are introduced to model and represent uncertainties inherent in data mining tasks, providing a more robust optimization framework. Our work contributes to the advancement of optimization techniques in data mining by offering a synergistic solution to local optima traps. The integration of intelligent multi-agent swarms and orthopair fuzzy sets enhances the algorithm’s adaptability and resilience, leading to improved convergence and better solutions. Experimental results demonstrate the efficacy of our proposed approach in overcoming local optima traps, showcasing superior performance compared to traditional algorithms. The hybrid system exhibits increased convergence rates and consistently discovers more accurate and diverse solutions across various data mining scenarios.</description><issn>0976-6561</issn><issn>2229-6956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1PgzAcxhujicvc2Wu_ANu_hRZ6bDYGjYUS6DTuQngpyRaNBk7e_Ogb09PzHJ6X5IfQM4E1JYKEm9N56tYUaLCGgEV3aEEpFR4XjN-jBYiQe5xx8ohW03QGAMICyrhYoN_K6FeVJ9imMbayesFmj7XZSo1NYVUmsS1lUWGV4520Emcqn9OyKLTaSqtMXl2rpTkk6TVjY61VEucWZwdtPXmz1ZssMyzzHTalTU0hVYn3h-PxHVexrZ7Qw9B8TG71r0tk97Hdpp42yfVBe11EIo-5wSfAesdCH_yWBg30rWhbYGHvUwFN51zvwDnaDMx1DQ9o5DreB0EkoG8if4k2f7Pd-DVNoxvq7_H02Yw_NYH6hrCeEdYzwnpG6F8AaORblA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kumar, Reddi Kiran</creator><creator>P, Chengamma</creator><creator>A, Senthil Kumar</creator><creator>G, Sai Chaitanya Kumar</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>SOLVING THE TASK OF LOCAL OPTIMA TRAPS IN DATA MINING APPLICATIONS THROUGH INTELLIGENT MULT-AGENT SWARM AND ORTHOPAIR FUZZY SETS</title><author>Kumar, Reddi Kiran ; P, Chengamma ; A, Senthil Kumar ; G, Sai Chaitanya Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c818-5ef3105de57303b24a0db9bb057d3290aceede0ee2af5eca6428ec6d44890da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Reddi Kiran</creatorcontrib><creatorcontrib>P, Chengamma</creatorcontrib><creatorcontrib>A, Senthil Kumar</creatorcontrib><creatorcontrib>G, Sai Chaitanya Kumar</creatorcontrib><creatorcontrib>DVR &amp; Dr. HS MIC College of Technology, India</creatorcontrib><creatorcontrib>Krishna University, India</creatorcontrib><creatorcontrib>Shri Vishnu Engineering College for Women, India</creatorcontrib><creatorcontrib>Annamacharya Institute of Technology and Sciences, India</creatorcontrib><collection>CrossRef</collection><jtitle>ICTACT journal on soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Reddi Kiran</au><au>P, Chengamma</au><au>A, Senthil Kumar</au><au>G, Sai Chaitanya Kumar</au><aucorp>DVR &amp; Dr. HS MIC College of Technology, India</aucorp><aucorp>Krishna University, India</aucorp><aucorp>Shri Vishnu Engineering College for Women, India</aucorp><aucorp>Annamacharya Institute of Technology and Sciences, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOLVING THE TASK OF LOCAL OPTIMA TRAPS IN DATA MINING APPLICATIONS THROUGH INTELLIGENT MULT-AGENT SWARM AND ORTHOPAIR FUZZY SETS</atitle><jtitle>ICTACT journal on soft computing</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>3</issue><spage>3263</spage><epage>3268</epage><pages>3263-3268</pages><issn>0976-6561</issn><eissn>2229-6956</eissn><abstract>Local optima traps pose a significant challenge in optimizing complex problems, particularly in data mining applications, where traditional algorithms may get stuck in suboptimal solutions. This study addresses this issue by combining the power of intelligent multi-agent swarm algorithms and orthopair fuzzy sets to enhance optimization processes. We propose a novel approach that leverages the collective intelligence of a multi-agent swarm system, enabling effective exploration and exploitation of solution spaces. Additionally, orthopair fuzzy sets are introduced to model and represent uncertainties inherent in data mining tasks, providing a more robust optimization framework. Our work contributes to the advancement of optimization techniques in data mining by offering a synergistic solution to local optima traps. The integration of intelligent multi-agent swarms and orthopair fuzzy sets enhances the algorithm’s adaptability and resilience, leading to improved convergence and better solutions. Experimental results demonstrate the efficacy of our proposed approach in overcoming local optima traps, showcasing superior performance compared to traditional algorithms. The hybrid system exhibits increased convergence rates and consistently discovers more accurate and diverse solutions across various data mining scenarios.</abstract><doi>10.21917/ijsc.2024.0458</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-6561
ispartof ICTACT journal on soft computing, 2024-01, Vol.14 (3), p.3263-3268
issn 0976-6561
2229-6956
language eng
recordid cdi_crossref_primary_10_21917_ijsc_2024_0458
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title SOLVING THE TASK OF LOCAL OPTIMA TRAPS IN DATA MINING APPLICATIONS THROUGH INTELLIGENT MULT-AGENT SWARM AND ORTHOPAIR FUZZY SETS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOLVING%20THE%20TASK%20OF%20LOCAL%20OPTIMA%20TRAPS%20IN%20DATA%20MINING%20APPLICATIONS%20THROUGH%20INTELLIGENT%20MULT-AGENT%20SWARM%20AND%20ORTHOPAIR%20FUZZY%20SETS&rft.jtitle=ICTACT%20journal%20on%20soft%20computing&rft.au=Kumar,%20Reddi%20Kiran&rft.aucorp=DVR%20&%20Dr.%20HS%20MIC%20College%20of%20Technology,%20India&rft.date=2024-01-01&rft.volume=14&rft.issue=3&rft.spage=3263&rft.epage=3268&rft.pages=3263-3268&rft.issn=0976-6561&rft.eissn=2229-6956&rft_id=info:doi/10.21917/ijsc.2024.0458&rft_dat=%3Ccrossref%3E10_21917_ijsc_2024_0458%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true