Characterizing Protein Shape by a Volume Distribution Asymmetry Index

A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The open bioinformatics journal 2012-05, Vol.6 (1), p.20-27
Hauptverfasser: Arrigo, Nicola, Paci, Paola, Di Paola, Luisa, Santoni, Daniele, De Ruvo, Micol, Giuliani, Alessandro, Castiglione, Filippo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 20
container_title The open bioinformatics journal
container_volume 6
creator Arrigo, Nicola
Paci, Paola
Di Paola, Luisa
Santoni, Daniele
De Ruvo, Micol
Giuliani, Alessandro
Castiglione, Filippo
description A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.
doi_str_mv 10.2174/1875036201206010020
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2174_1875036201206010020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2174_1875036201206010020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2090-fb7a92ca8f4aedf38e2d53ab66fab0ca3849db813f1ec4dce472b327b5412b883</originalsourceid><addsrcrecordid>eNptkM1Kw0AURgdRsFafwM28QPTOT5LJstRqCwUFf7bhzuSOHWmSMpOC8ekl6MKFq-_jLM7iMHYt4EaKUt8KU-agCglCQgECQMIJm000m_Dpn3_OLlL6ACiUkWrGVssdRnQDxfAVunf-FPuBQsefd3ggbkeO_K3fH1vidyENMdjjEPqOL9LYtjTEkW-6hj4v2ZnHfaKr352z1_vVy3KdbR8fNsvFNnMSKsi8LbGSDo3XSI1XhmSTK7RF4dGCQ2V01VgjlBfkdONIl9IqWdpcC2mNUXOmfrwu9ilF8vUhhhbjWAuopxL1PyXUN4DcUYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Arrigo, Nicola ; Paci, Paola ; Di Paola, Luisa ; Santoni, Daniele ; De Ruvo, Micol ; Giuliani, Alessandro ; Castiglione, Filippo</creator><creatorcontrib>Arrigo, Nicola ; Paci, Paola ; Di Paola, Luisa ; Santoni, Daniele ; De Ruvo, Micol ; Giuliani, Alessandro ; Castiglione, Filippo</creatorcontrib><description>A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.</description><identifier>ISSN: 1875-0362</identifier><identifier>EISSN: 1875-0362</identifier><identifier>DOI: 10.2174/1875036201206010020</identifier><language>eng</language><ispartof>The open bioinformatics journal, 2012-05, Vol.6 (1), p.20-27</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2090-fb7a92ca8f4aedf38e2d53ab66fab0ca3849db813f1ec4dce472b327b5412b883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Arrigo, Nicola</creatorcontrib><creatorcontrib>Paci, Paola</creatorcontrib><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Santoni, Daniele</creatorcontrib><creatorcontrib>De Ruvo, Micol</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Castiglione, Filippo</creatorcontrib><title>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</title><title>The open bioinformatics journal</title><description>A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.</description><issn>1875-0362</issn><issn>1875-0362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkM1Kw0AURgdRsFafwM28QPTOT5LJstRqCwUFf7bhzuSOHWmSMpOC8ekl6MKFq-_jLM7iMHYt4EaKUt8KU-agCglCQgECQMIJm000m_Dpn3_OLlL6ACiUkWrGVssdRnQDxfAVunf-FPuBQsefd3ggbkeO_K3fH1vidyENMdjjEPqOL9LYtjTEkW-6hj4v2ZnHfaKr352z1_vVy3KdbR8fNsvFNnMSKsi8LbGSDo3XSI1XhmSTK7RF4dGCQ2V01VgjlBfkdONIl9IqWdpcC2mNUXOmfrwu9ilF8vUhhhbjWAuopxL1PyXUN4DcUYI</recordid><startdate>20120509</startdate><enddate>20120509</enddate><creator>Arrigo, Nicola</creator><creator>Paci, Paola</creator><creator>Di Paola, Luisa</creator><creator>Santoni, Daniele</creator><creator>De Ruvo, Micol</creator><creator>Giuliani, Alessandro</creator><creator>Castiglione, Filippo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120509</creationdate><title>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</title><author>Arrigo, Nicola ; Paci, Paola ; Di Paola, Luisa ; Santoni, Daniele ; De Ruvo, Micol ; Giuliani, Alessandro ; Castiglione, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2090-fb7a92ca8f4aedf38e2d53ab66fab0ca3849db813f1ec4dce472b327b5412b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arrigo, Nicola</creatorcontrib><creatorcontrib>Paci, Paola</creatorcontrib><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Santoni, Daniele</creatorcontrib><creatorcontrib>De Ruvo, Micol</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Castiglione, Filippo</creatorcontrib><collection>CrossRef</collection><jtitle>The open bioinformatics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arrigo, Nicola</au><au>Paci, Paola</au><au>Di Paola, Luisa</au><au>Santoni, Daniele</au><au>De Ruvo, Micol</au><au>Giuliani, Alessandro</au><au>Castiglione, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</atitle><jtitle>The open bioinformatics journal</jtitle><date>2012-05-09</date><risdate>2012</risdate><volume>6</volume><issue>1</issue><spage>20</spage><epage>27</epage><pages>20-27</pages><issn>1875-0362</issn><eissn>1875-0362</eissn><abstract>A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.</abstract><doi>10.2174/1875036201206010020</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1875-0362
ispartof The open bioinformatics journal, 2012-05, Vol.6 (1), p.20-27
issn 1875-0362
1875-0362
language eng
recordid cdi_crossref_primary_10_2174_1875036201206010020
source EZB-FREE-00999 freely available EZB journals
title Characterizing Protein Shape by a Volume Distribution Asymmetry Index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Protein%20Shape%20by%20a%20Volume%20Distribution%20Asymmetry%20Index&rft.jtitle=The%20open%20bioinformatics%20journal&rft.au=Arrigo,%20Nicola&rft.date=2012-05-09&rft.volume=6&rft.issue=1&rft.spage=20&rft.epage=27&rft.pages=20-27&rft.issn=1875-0362&rft.eissn=1875-0362&rft_id=info:doi/10.2174/1875036201206010020&rft_dat=%3Ccrossref%3E10_2174_1875036201206010020%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true