Characterizing Protein Shape by a Volume Distribution Asymmetry Index
A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three...
Gespeichert in:
Veröffentlicht in: | The open bioinformatics journal 2012-05, Vol.6 (1), p.20-27 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | The open bioinformatics journal |
container_volume | 6 |
creator | Arrigo, Nicola Paci, Paola Di Paola, Luisa Santoni, Daniele De Ruvo, Micol Giuliani, Alessandro Castiglione, Filippo |
description | A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps. |
doi_str_mv | 10.2174/1875036201206010020 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2174_1875036201206010020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2174_1875036201206010020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2090-fb7a92ca8f4aedf38e2d53ab66fab0ca3849db813f1ec4dce472b327b5412b883</originalsourceid><addsrcrecordid>eNptkM1Kw0AURgdRsFafwM28QPTOT5LJstRqCwUFf7bhzuSOHWmSMpOC8ekl6MKFq-_jLM7iMHYt4EaKUt8KU-agCglCQgECQMIJm000m_Dpn3_OLlL6ACiUkWrGVssdRnQDxfAVunf-FPuBQsefd3ggbkeO_K3fH1vidyENMdjjEPqOL9LYtjTEkW-6hj4v2ZnHfaKr352z1_vVy3KdbR8fNsvFNnMSKsi8LbGSDo3XSI1XhmSTK7RF4dGCQ2V01VgjlBfkdONIl9IqWdpcC2mNUXOmfrwu9ilF8vUhhhbjWAuopxL1PyXUN4DcUYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Arrigo, Nicola ; Paci, Paola ; Di Paola, Luisa ; Santoni, Daniele ; De Ruvo, Micol ; Giuliani, Alessandro ; Castiglione, Filippo</creator><creatorcontrib>Arrigo, Nicola ; Paci, Paola ; Di Paola, Luisa ; Santoni, Daniele ; De Ruvo, Micol ; Giuliani, Alessandro ; Castiglione, Filippo</creatorcontrib><description>A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.</description><identifier>ISSN: 1875-0362</identifier><identifier>EISSN: 1875-0362</identifier><identifier>DOI: 10.2174/1875036201206010020</identifier><language>eng</language><ispartof>The open bioinformatics journal, 2012-05, Vol.6 (1), p.20-27</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2090-fb7a92ca8f4aedf38e2d53ab66fab0ca3849db813f1ec4dce472b327b5412b883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Arrigo, Nicola</creatorcontrib><creatorcontrib>Paci, Paola</creatorcontrib><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Santoni, Daniele</creatorcontrib><creatorcontrib>De Ruvo, Micol</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Castiglione, Filippo</creatorcontrib><title>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</title><title>The open bioinformatics journal</title><description>A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.</description><issn>1875-0362</issn><issn>1875-0362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkM1Kw0AURgdRsFafwM28QPTOT5LJstRqCwUFf7bhzuSOHWmSMpOC8ekl6MKFq-_jLM7iMHYt4EaKUt8KU-agCglCQgECQMIJm000m_Dpn3_OLlL6ACiUkWrGVssdRnQDxfAVunf-FPuBQsefd3ggbkeO_K3fH1vidyENMdjjEPqOL9LYtjTEkW-6hj4v2ZnHfaKr352z1_vVy3KdbR8fNsvFNnMSKsi8LbGSDo3XSI1XhmSTK7RF4dGCQ2V01VgjlBfkdONIl9IqWdpcC2mNUXOmfrwu9ilF8vUhhhbjWAuopxL1PyXUN4DcUYI</recordid><startdate>20120509</startdate><enddate>20120509</enddate><creator>Arrigo, Nicola</creator><creator>Paci, Paola</creator><creator>Di Paola, Luisa</creator><creator>Santoni, Daniele</creator><creator>De Ruvo, Micol</creator><creator>Giuliani, Alessandro</creator><creator>Castiglione, Filippo</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120509</creationdate><title>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</title><author>Arrigo, Nicola ; Paci, Paola ; Di Paola, Luisa ; Santoni, Daniele ; De Ruvo, Micol ; Giuliani, Alessandro ; Castiglione, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2090-fb7a92ca8f4aedf38e2d53ab66fab0ca3849db813f1ec4dce472b327b5412b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arrigo, Nicola</creatorcontrib><creatorcontrib>Paci, Paola</creatorcontrib><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Santoni, Daniele</creatorcontrib><creatorcontrib>De Ruvo, Micol</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><creatorcontrib>Castiglione, Filippo</creatorcontrib><collection>CrossRef</collection><jtitle>The open bioinformatics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arrigo, Nicola</au><au>Paci, Paola</au><au>Di Paola, Luisa</au><au>Santoni, Daniele</au><au>De Ruvo, Micol</au><au>Giuliani, Alessandro</au><au>Castiglione, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Protein Shape by a Volume Distribution Asymmetry Index</atitle><jtitle>The open bioinformatics journal</jtitle><date>2012-05-09</date><risdate>2012</risdate><volume>6</volume><issue>1</issue><spage>20</spage><epage>27</epage><pages>20-27</pages><issn>1875-0362</issn><eissn>1875-0362</eissn><abstract>A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly connected with topological features of proteins, as emerging from complex network invariants of their contact maps.</abstract><doi>10.2174/1875036201206010020</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1875-0362 |
ispartof | The open bioinformatics journal, 2012-05, Vol.6 (1), p.20-27 |
issn | 1875-0362 1875-0362 |
language | eng |
recordid | cdi_crossref_primary_10_2174_1875036201206010020 |
source | EZB-FREE-00999 freely available EZB journals |
title | Characterizing Protein Shape by a Volume Distribution Asymmetry Index |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Protein%20Shape%20by%20a%20Volume%20Distribution%20Asymmetry%20Index&rft.jtitle=The%20open%20bioinformatics%20journal&rft.au=Arrigo,%20Nicola&rft.date=2012-05-09&rft.volume=6&rft.issue=1&rft.spage=20&rft.epage=27&rft.pages=20-27&rft.issn=1875-0362&rft.eissn=1875-0362&rft_id=info:doi/10.2174/1875036201206010020&rft_dat=%3Ccrossref%3E10_2174_1875036201206010020%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |