CAPSULE NETWORK FOR BRAIN TUMORS SEGMENTATION IN MRI IMAGES

Glioma is an abnormal, irregularly shaped cell growth in the brain. Diagnosing glioma often relies on magnetic resonance imaging (MRI), which requires precise segmentation of the tumor for effective analysis. Convolutional Neural Networks (CNN), such as U-Net, is widely used in medical image process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced research (Indore) 2024-09, Vol.12 (9), p.1337-1346
Hauptverfasser: Farisya Norazlan, Yasmin, Salasiah Mokri, Siti, Fatihah Ali, Nurul, Aizuddin Abd Rahni, Ashrani, Baseri Huddin, Aqilah, Zulkarnain, Noraishikin, Abid Hakimi Md Salleh, Ahmad, Aziyatul Izni, Nor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1346
container_issue 9
container_start_page 1337
container_title International journal of advanced research (Indore)
container_volume 12
creator Farisya Norazlan, Yasmin
Salasiah Mokri, Siti
Fatihah Ali, Nurul
Aizuddin Abd Rahni, Ashrani
Baseri Huddin, Aqilah
Zulkarnain, Noraishikin
Abid Hakimi Md Salleh, Ahmad
Aziyatul Izni, Nor
description Glioma is an abnormal, irregularly shaped cell growth in the brain. Diagnosing glioma often relies on magnetic resonance imaging (MRI), which requires precise segmentation of the tumor for effective analysis. Convolutional Neural Networks (CNN), such as U-Net, is widely used in medical image processing, particularly for image segmentation tasks. However, CNNs have the limitation in effectively learning spatial relationships within images. To address this, Capsule Networks (CapsNet) is introduced, utilizing capsule dynamic routing to better capture spatial hierarchies. This paper aims to investigate the performance of SegCaps, a segmentation model based on Capsule Networks, for brain glioma segmentation in MRI images, compared to the CNN-based U-Net model. Both models were tested on the BraTS2018 glioma dataset, which includes 374 MRI images of brain tumors across four modalities (T1, T1c, T2, FLAIR). The performance of SegCaps and U-Net was evaluated using two key segmentation metrics: Dice coefficient and Jaccard index. The results show that SegCaps outperformed U-Net with a Dice coefficient of 87.96% compared to U-Nets 85.56%, demonstrating a 2.4% improvement. Additionally, SegCaps required fewer parameters than the U-Net model, highlighting its efficiency. In conclusion, SegCaps can be considered as a promising alternative for glioma segmentation in MRI images. Future work could focus on refining the SegCaps model to enhance its performance while reducing computational costs.
doi_str_mv 10.21474/IJAR01/19571
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_21474_IJAR01_19571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_21474_IJAR01_19571</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_21474_IJAR01_195713</originalsourceid><addsrcrecordid>eNqVzkELgjAABeARBUl57L4_YG46G9JpybRVamyTjkNCoSiK7dS_L6pD107v8XiHD4AZRvMIE0pCsWES4RCnCcUD4EVxhIKEIDr86WPgO3dGCOGY4EVKPbDM2F41Ow4rrg-13MK8lnAlmaigbspaKqh4UfJKMy3qCr7mUgooSlZwNQWjvr24zv_mBAQ519k6ONqbc7brzd2erq19GIzMG2k-SPNGxv_-n6pZPL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CAPSULE NETWORK FOR BRAIN TUMORS SEGMENTATION IN MRI IMAGES</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Farisya Norazlan, Yasmin ; Salasiah Mokri, Siti ; Fatihah Ali, Nurul ; Aizuddin Abd Rahni, Ashrani ; Baseri Huddin, Aqilah ; Zulkarnain, Noraishikin ; Abid Hakimi Md Salleh, Ahmad ; Aziyatul Izni, Nor</creator><creatorcontrib>Farisya Norazlan, Yasmin ; Salasiah Mokri, Siti ; Fatihah Ali, Nurul ; Aizuddin Abd Rahni, Ashrani ; Baseri Huddin, Aqilah ; Zulkarnain, Noraishikin ; Abid Hakimi Md Salleh, Ahmad ; Aziyatul Izni, Nor ; Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering &amp; Built Environment, Universiti Kebangsaan Malaysia, Malaysia ; Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia</creatorcontrib><description>Glioma is an abnormal, irregularly shaped cell growth in the brain. Diagnosing glioma often relies on magnetic resonance imaging (MRI), which requires precise segmentation of the tumor for effective analysis. Convolutional Neural Networks (CNN), such as U-Net, is widely used in medical image processing, particularly for image segmentation tasks. However, CNNs have the limitation in effectively learning spatial relationships within images. To address this, Capsule Networks (CapsNet) is introduced, utilizing capsule dynamic routing to better capture spatial hierarchies. This paper aims to investigate the performance of SegCaps, a segmentation model based on Capsule Networks, for brain glioma segmentation in MRI images, compared to the CNN-based U-Net model. Both models were tested on the BraTS2018 glioma dataset, which includes 374 MRI images of brain tumors across four modalities (T1, T1c, T2, FLAIR). The performance of SegCaps and U-Net was evaluated using two key segmentation metrics: Dice coefficient and Jaccard index. The results show that SegCaps outperformed U-Net with a Dice coefficient of 87.96% compared to U-Nets 85.56%, demonstrating a 2.4% improvement. Additionally, SegCaps required fewer parameters than the U-Net model, highlighting its efficiency. In conclusion, SegCaps can be considered as a promising alternative for glioma segmentation in MRI images. Future work could focus on refining the SegCaps model to enhance its performance while reducing computational costs.</description><identifier>ISSN: 2320-5407</identifier><identifier>EISSN: 2320-5407</identifier><identifier>DOI: 10.21474/IJAR01/19571</identifier><language>eng</language><ispartof>International journal of advanced research (Indore), 2024-09, Vol.12 (9), p.1337-1346</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Farisya Norazlan, Yasmin</creatorcontrib><creatorcontrib>Salasiah Mokri, Siti</creatorcontrib><creatorcontrib>Fatihah Ali, Nurul</creatorcontrib><creatorcontrib>Aizuddin Abd Rahni, Ashrani</creatorcontrib><creatorcontrib>Baseri Huddin, Aqilah</creatorcontrib><creatorcontrib>Zulkarnain, Noraishikin</creatorcontrib><creatorcontrib>Abid Hakimi Md Salleh, Ahmad</creatorcontrib><creatorcontrib>Aziyatul Izni, Nor</creatorcontrib><creatorcontrib>Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering &amp; Built Environment, Universiti Kebangsaan Malaysia, Malaysia</creatorcontrib><creatorcontrib>Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia</creatorcontrib><title>CAPSULE NETWORK FOR BRAIN TUMORS SEGMENTATION IN MRI IMAGES</title><title>International journal of advanced research (Indore)</title><description>Glioma is an abnormal, irregularly shaped cell growth in the brain. Diagnosing glioma often relies on magnetic resonance imaging (MRI), which requires precise segmentation of the tumor for effective analysis. Convolutional Neural Networks (CNN), such as U-Net, is widely used in medical image processing, particularly for image segmentation tasks. However, CNNs have the limitation in effectively learning spatial relationships within images. To address this, Capsule Networks (CapsNet) is introduced, utilizing capsule dynamic routing to better capture spatial hierarchies. This paper aims to investigate the performance of SegCaps, a segmentation model based on Capsule Networks, for brain glioma segmentation in MRI images, compared to the CNN-based U-Net model. Both models were tested on the BraTS2018 glioma dataset, which includes 374 MRI images of brain tumors across four modalities (T1, T1c, T2, FLAIR). The performance of SegCaps and U-Net was evaluated using two key segmentation metrics: Dice coefficient and Jaccard index. The results show that SegCaps outperformed U-Net with a Dice coefficient of 87.96% compared to U-Nets 85.56%, demonstrating a 2.4% improvement. Additionally, SegCaps required fewer parameters than the U-Net model, highlighting its efficiency. In conclusion, SegCaps can be considered as a promising alternative for glioma segmentation in MRI images. Future work could focus on refining the SegCaps model to enhance its performance while reducing computational costs.</description><issn>2320-5407</issn><issn>2320-5407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVzkELgjAABeARBUl57L4_YG46G9JpybRVamyTjkNCoSiK7dS_L6pD107v8XiHD4AZRvMIE0pCsWES4RCnCcUD4EVxhIKEIDr86WPgO3dGCOGY4EVKPbDM2F41Ow4rrg-13MK8lnAlmaigbspaKqh4UfJKMy3qCr7mUgooSlZwNQWjvr24zv_mBAQ519k6ONqbc7brzd2erq19GIzMG2k-SPNGxv_-n6pZPL0</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Farisya Norazlan, Yasmin</creator><creator>Salasiah Mokri, Siti</creator><creator>Fatihah Ali, Nurul</creator><creator>Aizuddin Abd Rahni, Ashrani</creator><creator>Baseri Huddin, Aqilah</creator><creator>Zulkarnain, Noraishikin</creator><creator>Abid Hakimi Md Salleh, Ahmad</creator><creator>Aziyatul Izni, Nor</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240930</creationdate><title>CAPSULE NETWORK FOR BRAIN TUMORS SEGMENTATION IN MRI IMAGES</title><author>Farisya Norazlan, Yasmin ; Salasiah Mokri, Siti ; Fatihah Ali, Nurul ; Aizuddin Abd Rahni, Ashrani ; Baseri Huddin, Aqilah ; Zulkarnain, Noraishikin ; Abid Hakimi Md Salleh, Ahmad ; Aziyatul Izni, Nor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_21474_IJAR01_195713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Farisya Norazlan, Yasmin</creatorcontrib><creatorcontrib>Salasiah Mokri, Siti</creatorcontrib><creatorcontrib>Fatihah Ali, Nurul</creatorcontrib><creatorcontrib>Aizuddin Abd Rahni, Ashrani</creatorcontrib><creatorcontrib>Baseri Huddin, Aqilah</creatorcontrib><creatorcontrib>Zulkarnain, Noraishikin</creatorcontrib><creatorcontrib>Abid Hakimi Md Salleh, Ahmad</creatorcontrib><creatorcontrib>Aziyatul Izni, Nor</creatorcontrib><creatorcontrib>Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering &amp; Built Environment, Universiti Kebangsaan Malaysia, Malaysia</creatorcontrib><creatorcontrib>Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced research (Indore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farisya Norazlan, Yasmin</au><au>Salasiah Mokri, Siti</au><au>Fatihah Ali, Nurul</au><au>Aizuddin Abd Rahni, Ashrani</au><au>Baseri Huddin, Aqilah</au><au>Zulkarnain, Noraishikin</au><au>Abid Hakimi Md Salleh, Ahmad</au><au>Aziyatul Izni, Nor</au><aucorp>Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering &amp; Built Environment, Universiti Kebangsaan Malaysia, Malaysia</aucorp><aucorp>Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil, Selangor, Malaysia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAPSULE NETWORK FOR BRAIN TUMORS SEGMENTATION IN MRI IMAGES</atitle><jtitle>International journal of advanced research (Indore)</jtitle><date>2024-09-30</date><risdate>2024</risdate><volume>12</volume><issue>9</issue><spage>1337</spage><epage>1346</epage><pages>1337-1346</pages><issn>2320-5407</issn><eissn>2320-5407</eissn><abstract>Glioma is an abnormal, irregularly shaped cell growth in the brain. Diagnosing glioma often relies on magnetic resonance imaging (MRI), which requires precise segmentation of the tumor for effective analysis. Convolutional Neural Networks (CNN), such as U-Net, is widely used in medical image processing, particularly for image segmentation tasks. However, CNNs have the limitation in effectively learning spatial relationships within images. To address this, Capsule Networks (CapsNet) is introduced, utilizing capsule dynamic routing to better capture spatial hierarchies. This paper aims to investigate the performance of SegCaps, a segmentation model based on Capsule Networks, for brain glioma segmentation in MRI images, compared to the CNN-based U-Net model. Both models were tested on the BraTS2018 glioma dataset, which includes 374 MRI images of brain tumors across four modalities (T1, T1c, T2, FLAIR). The performance of SegCaps and U-Net was evaluated using two key segmentation metrics: Dice coefficient and Jaccard index. The results show that SegCaps outperformed U-Net with a Dice coefficient of 87.96% compared to U-Nets 85.56%, demonstrating a 2.4% improvement. Additionally, SegCaps required fewer parameters than the U-Net model, highlighting its efficiency. In conclusion, SegCaps can be considered as a promising alternative for glioma segmentation in MRI images. Future work could focus on refining the SegCaps model to enhance its performance while reducing computational costs.</abstract><doi>10.21474/IJAR01/19571</doi></addata></record>
fulltext fulltext
identifier ISSN: 2320-5407
ispartof International journal of advanced research (Indore), 2024-09, Vol.12 (9), p.1337-1346
issn 2320-5407
2320-5407
language eng
recordid cdi_crossref_primary_10_21474_IJAR01_19571
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title CAPSULE NETWORK FOR BRAIN TUMORS SEGMENTATION IN MRI IMAGES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAPSULE%20NETWORK%20FOR%20BRAIN%20TUMORS%20SEGMENTATION%20IN%20MRI%20IMAGES&rft.jtitle=International%20journal%20of%20advanced%20research%20(Indore)&rft.au=Farisya%20Norazlan,%20Yasmin&rft.aucorp=Department%20of%20Electrical,%20Electronic%20and%20Systems%20Engineering,%20Faculty%20of%20Engineering%20&%20Built%20Environment,%20Universiti%20Kebangsaan%20Malaysia,%20Malaysia&rft.date=2024-09-30&rft.volume=12&rft.issue=9&rft.spage=1337&rft.epage=1346&rft.pages=1337-1346&rft.issn=2320-5407&rft.eissn=2320-5407&rft_id=info:doi/10.21474/IJAR01/19571&rft_dat=%3Ccrossref%3E10_21474_IJAR01_19571%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true