Tangent-space methods for uniform matrix product states

In these lecture notes we give a technical overview of tangent-space methods for matrix product states in the thermodynamic limit. We introduce the manifold of uniform matrix product states, show how to compute different types of observables, and discuss the concept of a tangent space. We explain ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics lecture notes 2019-01, Article 7
Hauptverfasser: Vanderstraeten, Laurens, Haegeman, Jutho, Verstraete, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In these lecture notes we give a technical overview of tangent-space methods for matrix product states in the thermodynamic limit. We introduce the manifold of uniform matrix product states, show how to compute different types of observables, and discuss the concept of a tangent space. We explain how to variationally optimize ground-state approximations, implement real-time evolution and describe elementary excitations for a given model Hamiltonian. Also, we explain how matrix product states approximate fixed points of one-dimensional transfer matrices. We show how all these methods can be translated to the language of continuous matrix product states for one-dimensional field theories. We conclude with some extensions of the tangent-space formalism and with an outlook to new applications.
ISSN:2590-1990
2590-1990
DOI:10.21468/SciPostPhysLectNotes.7